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Abstract

Experiments with ultracold gases on the lattice give the opportunity to realize superfluid fermionic
mixtures in a trapping potential. The external trap modifies the chemical potential locally. Moreover,
this trap also introduces non-homogeneity in the superconducting order parameter. There are, among
other approaches, two methods which can be used to describe the system of two-component mixtures
loaded into an optical lattice: the Local Density Approximation (LDA) and the self-consistent
Bogoliubov—de Gennes equations. Here, we compare results obtained within these two methods.

We conclude that the results can be distinguishable only in the case of a small value of the pairing
interaction.

1. Introduction

Recent progress in experimental techniques in ultracold quantum gases gives ground to believe that they are
good candidates for realization of quantum simulators [1-5]. This progress gives the opportunity to study
different types of quantum models, well established already in many-body physics [5-7].

Parameters such as the depth of the periodic trapping potential or the lattice geometry can be tuned with a
high level of control in experiments. Moreover, the interaction strengths can also be fully controlled via so-called
Feshbach resonances [8], giving the possibility of realization of repulsively and attractively interacting systems
[9]. The latter allows for an experimental study of superfluid states [10-12].

Typically, a system of ultracold atoms is located in an external potential, for instance in a harmonic trap. This
potential introduces some effective site-dependent chemical potential and non-homogeneous distribution of
the particles in the system. As a consequence, non-uniform superconducting order parameter is expected. The
system can be studied theoretically via several methods. In this paper, we compare the results obtained within
the Local Density Approximation (LDA) and the self-consistent Bogoliubov—de Gennes (BdG) equations, for a
system of an ultracold attractive fermionic gas loaded into a one-dimensional (1D) optical lattice, putin a
harmonic trap.

The paper is organized as follows: first, we shortly introduce the model as well as the above mentioned
methods (section 2). In section 3, we present and discuss numerical results. Finally, we summarize in section 4.

2.Model and techniques

We investigate a fermionic gas loaded onto a one-dimensional lattice, in a harmonic trap, which is schematically
illustrated in figure 1. The system under consideration can be described by the Hamiltonian:

© 2020 The Author(s). Published by IOP Publishing Ltd
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Figure 1. Schematic representation of fermionic gases on the lattice in a trapping potential. The atoms with spins T and | (orange and
blue color, respectively) can tunnel between nearest-neighbor lattice sites with the hopping amplitude ¢. The on-site interaction
strength U between atoms can also be tuned via Feshbach resonances. The trapping potential introduces an effective site-dependent
chemical potential and non-homogeneous distribution of atoms in the system.

H =3 (—t; — p6i)chcio + U nigniyy @
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where c; (cir) describes the creation (annihilation) operator of a particle in the site7and of spin o = {1, | }.
For simplification, we assume only hopping between the nearest-neighbor sites, i.e., ;) = t. U < 01is the on-
site pairing interaction. yq is the chemical potential of the trapped gases, determining the total number of
particles in the system, while p1; = 1, + V (r;) is an effective on-site chemical potential. V (r;) is the trapping
potential, typically given in harmonic form, i.e., V ~ (ry — 1;)%, where ry is the center of the trap. The interaction
term is treated within the mean-field approximation:

nipniy = Afcijcir + AiCiTTCiTL — AP, 2

where A; = (c;| ¢j7) is the s-wave superconducting order parameter (SOP). Hence, the mean-field Hamiltonian
in real space takes the form:
HMF = Z (ti]’ — /Liéij)CiLCJ‘g + UZ(A?CUC:’T + H.c.) — UZ |A,’|2. 3)

i,j,0

2.1.Local density approximation solution
The LDA method is based on an assumption that, locally, the system behaves like a uniform gas [ 1, 2]. The
parameters of the system depend solely on the value of the particle density n; = n;; + n;| (i.e. theaverage
number of particles), at each point i of space [13, 14]. Hence, the local SOP is defined only by #; = n(y;). In the
presence of the trapping potential, local lattice potential is given by u; = 11,(n;) + V (r;), called Thomas—Fermi
equation [1, 2]. The chemical potential p is fixed by the condition Y, n; = N, where Nis the total number of
particles in the system. In a general case, the functional A; = A(n;) = A(y;) can be found starting from the
solution for the homogeneous system, i.e., A; = A(n = n;), whichgives A; = A(p = ).

First, let us shortly describe derivation of the equations which are useful in the LDA method [15, 16]. In the
case of ahomogeneous system (y; = pand A; = A), the Hamiltonian (3) takes the following form in

momentum space:
HME — Z gkC,jUCk(, + UZ(A*C’CTC—H + h.c) — UZIAlZ, 4)
ko k k
where & = —2t cos(k) — p is the single-particle dispersion relation of the one-dimensional system. Here, it

should be noticed that the presented derivations do not depend on the lattice dimensionality. Using anti-
commutation relation, the first term can be rewritten as:

S e ko = Z[gkC;'TCkT + &1 — Ckiql)]- (5)
ko k

This allows us to write down the Hamiltonian H*F in the Nambu notation:

HME =" O/ Hi® + Y (& — UIAP),
k

k
& A
Hy = , 6

where ] = (c,:rT, c_k)) are the Nambu spinors. The system can be solved using the Bogoliubov transformation:

¥ i
CkT _ U Vi Vi
(C—kl] (—vk uk)(’yk)’ (7)

where ~' and 7y are the quasiparticle operators. The spectrum of the Hamiltonian is given by A\». = +./& + A2,
while
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Hence, the coefficients uy and vy satisfy the condition: uk2 + v,f = 1. The energy of the system is determined
from the grand-canonical potential @ = —kg T In(Tr[exp(—HMF /kgT)]), while the SOP value is determined

from its global minimum. In the absence of a discontinuous phase transition, the minimum of energy
corresponds to 9€2/0A = 0 or, equivalently:

A= —%2 wevl FOD) — FOOL- ©)
k

The above equation is called the gap equation. Here, f (w) = [1 + exp(w/kgT)]! is the Fermi-Dirac
distribution at temperature T, while N'is the number of states. Similarly, the occupations ny, = (c,jg Ckoy can be
found as:

O3

nkl} = u fO%) + v f (=D, (10)

which is equivalentto Y, #x, = —0€2/Op. Asaresult, one can find values of A(y:) and n () within the LDA
method.

2.2.Bogoliubov—de Gennes solution
In the case of the non-homogeneous Hamiltonian (3), the system can be solved within the Bogoliubov—Valatin
transformation:

Cig = Z(”ina')/na - O'V;;EU’YZ(T): (11)

n

where v, and 'yfm are the quasi-particle fermionic operatorsand & = —o. The above transformation can be
treated as an extended version of the transformation (7) in real space. If the Hamiltonian is diagonalized under
the transformation (11),i.e., M =35, E€,,7 7, therelations [17]:

[, o) = =En - [, 6] = Enrths (12)
hold such that one straightforwardly finds Bogoliubov—de Gennes equations[18] (called also Blonder—Tinkham—

Klapwijk equations):
) H:: A u;
Uins ijo ij ino
gﬂ”("i:a) - Z[A*J‘ _H?‘.‘_](ana)’ (13)
] 1

ijo

where Hj, = —t8;jy — p;6;; is the single-particle Hamiltonian and Aj; = UA;§;; are the on-site SOPs. Due to
the symmetry of the BAG equations with respect to spin inversion, we can find an identity relation between

eigenpairs:
Uing ~Vino
E,,,,(Vim_r) =l ) (14)
The SOPs can be found self-consistently as:
Ai = (cijcir)
=3 [inyvin, £ (Enr) — ttin Viny f (= EnD]- (15)

In a similar way, the site-dependent average number of particles, n; = n;; + n;| can be determined, where:

Nig = <Citr Ci0>

= Z[luinalzf(gna) + |Vinr7|2f(_5m‘7)]- (16)

2.3. Numerical implementation

As has been pointed out in the previous paragraph, the chemical potential 1, of the system in the trapping
potential is fixed by the total number of particles N. Next, the solution of the system within the LDA method is
defined by the effective potential 1; given by the Thomas—Fermi equation. Hence, the corresponding SOP A can
be found by minimization of 2(A) at fixed p; [19-21]. In fact, this way is equivalent to the one in which

equation (9) should be solved [22]. The huge advantage of this method is based on the fact that it is relatively
simple to implement and quite quickly solvable even for a trapped system, due to an efficient procedure of
finding the solution for a homogeneous system. For instance, in the two-dimensional (2D) case, the solution (the
minimum of the grand canonical potential) can be found for the system with around a thousand sites [21].

3
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Figure 2. Average number of particles 7 (blue) and superconducting order parameter A (green) as a function of the chemical potential
w for different values of the pairing potential U < 0, at fixed k3 T/t = 10~*. The results were obtained within the LDA approach.

In turn, the self-consistent solution A; (15) and #;, (16) of the BAG equations (13), in the presence of the
trapping potential, can be found only when all eigenpairs are known. Hence, the BAG equations are associated
with the exact diagonalization of the Hamiltonian in matrix form, which can be found numerically using one of
the available numerical libraries, e.g. LAPACK [23], Intel MKL [24] or MAGMA [25, 26]. However, this method is
very computational time-consuming ~N° and leads to a limitation in the system size N. This problem can be
partially solved by using the sparse matrices storage implemented in some modern softwares, for instance
ARPACK [27]. Moreover, there exist some iterative methods for solving the BAG equations [28—32], based on the
kernel polynomial method [33]. For instance, in the Chebyshev—Bogoliubov—de Gennes method, the Chebyshev
expansion of Green’s functions is implemented. This type of methods allows to study the large size systems, even
with hundreds or thousands sites [32]. Moreover, in some physical problems, it is reasonable to limit the
number of eigenpairs to only few nearest ones to ‘zero energy’ (i.e. the Fermi level). This issue is implemented,
e.g., In FEAST [34] and it can be applicable to topological edge states investigations, for instance.

3. Numerical results and discussion

3.1. Spin-balanced system

Here, we describe the balanced system case, which means the average number of particles with opposite spin in
eachssiteis equal (1;; = n;)). Due to the fact that the average number of particles #; in each site is determined by
the effective chemical potential y;, to perform the calculation within both methods, the chemical potential is
discretized with the parametrization: 1, = p + V (r).

Figure 2 shows n versus pand A versus 1 dependences, obtained within LDA calculations. In the case of a
one-dimensional system, the band edges are at +, = 2¢. At U/t = 0, the chemical potential changes from —2¢
to 2t, which corresponds to the fillingn = 0 and n = 2 at the band edges. The SOP is equal to zero for the non-
interacting system. With increasing on-site interaction, the SOP increases. For intermediate couplings, the
chemical potential drops below the lower band edge, which, according to the Leggett criterion [35], indicates the
BCS-BEC crossover [36]. Found values of the n(1) and A() can be used as a solution of the system for a given
U < 0from the LDA approach.

Figure 3 shows results in the case of the system in a harmonic trap, V (r;) = Vy(ry — 1;)% We fix
Vp/t = 15 x 107°. The average number of particles n;, obtained within these two methods, is comparable for
the chosen parameters. A similar behavior is observed for the SOP A; in the center of the trap. However, the
situation looks differently at the edge of the harmonic trap (insets). Namely, LDA gives significantly different
solutions for the SOP from those obtained within the BAG method at relatively small attractive interactions U

4
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Figure 3. A comparison of the results obtained from the BAdG method (solid lines) and the LDA approach (dashed lines). Black dashed
line shows the effective chemical potential 11, while red (yellow) and blue (light blue) solid (dashed) lines correspond to the BAG (LDA)
results. Inset shows the comparison of results for BAG (red line) and LDA (blue squares) approaches around the edge of the system.
The numerical simulations were performed at ks T/t = 107*.

(top panel). A similar behavior has been observed in the case of a spin-imbalanced system in which
unconventional pairing [37-39] can be realized at the edge of the system.

Itis worth emphasizing that the LDA is a reliable approach when the gradient corrections are relatively small.
In turn, the BAG solutions in each site depend on the rest of the system via equations (13) and (15). Hence, the
BdG method is a better approach to describe the system under consideration. Moreover, the LDA can also fail in
the description of the system in a strong anisotropic trap [40].

3.2. Other applications and limitations

The theoretical predictions within the LDA method are in relatively good agreement with experimental results
[41-44]. This method was already successfully implemented in the context of trapped ultracold quantum gases
[37,40,45-47]. However, the LDA method has some limitations which can be lifted by applying the BAG
technique. Below, we give two examples of the systems for which the LDA method fails.

3.2.1. Spin-imbalanced systems

Both methods under consideration can be applied for a spin-imbalanced system, i.e., when n;; = n;| [13,48].
This corresponds to the experimental setup with a two-component Fermi mixture, with unequal number of
atoms with opposite spins [49-51]. This leads effectively to the substitution H — H — h>_ i(ciTT it — CiTl cis
where h is the Zeeman magnetic field inducing the spin-imbalance. In the case of the LDA method, this is
equivalent to the substitution & — &, = & — oh. Hence, an additional condition is needed in the numerical
calculations, i.e. ON = >".(n;; — n;)). Here, the n;; — n;| corresponds to the magnetization at i-th site. It is
worth mentioning, that the symmetry of the BAG equations, given by equation (14), is preserved.

In the weak coupling limit, at a large spin imbalacne (i.e. polarization) [22, 38], the Fulde—Ferrell-Larkin—
Ovchinnikov (FFLO) phase [52, 53] can occur. In this case, the SOP is characterized by oscillations in real space
and at non-zero local polarization [13, 54]. If the polarization is equal to zero or low, the connection between the
phase diagrams of the system without a trapping potential and in the presence of the harmonic trap [55] exists, in
the LDA method [22]. Unfortunately, the LDA approach cannot account for the oscillating character of the SOP
as well as the oscillations of the average number of particles in the FFLO phase [13, 56]. A similar problem has
been observed for the spin-imbalanced gap [57] estimated within the LDA method and the Density Matrix
Renormalization Group (DMRG). In this case, the oscillating character of n; at relatively low polarization has not
been reproduced within the LDA method. Moreover, the LDA calculations underestimate critical parameters of
the system, with respect to the results obtained within the DMRG [57] or the BdG approach [22].
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The situation can be even more complicated in the two dimensional systems. In the case of the harmonic
trap, the additional SOP oscillations along the radial direction have been reported [37, 58—60]. However, for the
toroidal trap, the oscillations of the SOP can be function of angle, due to rotational symmetry of the system
[61-63]. The combination of these two types of oscillations can be expected [64] as well. This case shows an
advantage of the BAG technique in the comparison to LDA, i.e. the spin-imbalanced systems with
unconventional superconducting phases.

3.2.2. Non-homogeneous systems

The strongly inhomogeneous systems, e.g. systems with long-range magnetic or charge orderings or disordered
systems are examples for which the LDA method fails. Apart from the above systems, one should mention
ultracold fermionic gases or the condensed matter systems [65]. Here, the impurities [66—68] or vortices [69—-71]
play the role of inhomogeneity. It is worth mentioning the superconducting systems with spin-density (SDW) or
charge-density (CDW) waves coexistence [72—75]. The ‘local’ disorder in the system influences on the properties
of the system. Because of the presence of inhomogeneity with long-range’ impact on the system, the LDA
method can not be used. In such cases, only the BdG technique is suitable [65].

4. Summary

In this paper, we studied an ultracold fermionic mixture loaded into a one-dimensional lattice, putin a
harmonic trap. We briefly compared the Local Density Approximation and the self-consistent Bogoliubov—

de Gennes equations—the main assumptions, implementations and limitations of both of these methods. We
have shown that both approaches give comparable results in the case of relatively large paring interactions U. For
smaller U, the results for the superconducting order parameter A can be significantly different, especially in the
case of a small density of particles, i.e. small filling at the edge of the system. Concluding, the results obtained
within the LDA method can be treated as a starting point for the more accurate BdG technique. One should be
aware of the LDA method limitations. This method is strongly unrecommended to use for spin-imbalanced as
well as strongly inhomogeneous systems.
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