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Abstract
Experiments with ultracold gases on the lattice give the opportunity to realize superfluid fermionic
mixtures in a trapping potential. The external trapmodifies the chemical potential locally.Moreover,
this trap also introduces non-homogeneity in the superconducting order parameter. There are, among
other approaches, twomethods which can be used to describe the systemof two-componentmixtures
loaded into an optical lattice: the LocalDensity Approximation (LDA) and the self-consistent
Bogoliubov–deGennes equations. Here, we compare results obtainedwithin these twomethods.
We conclude that the results can be distinguishable only in the case of a small value of the pairing
interaction.

1. Introduction

Recent progress in experimental techniques in ultracold quantumgases gives ground to believe that they are
good candidates for realization of quantum simulators [1–5]. This progress gives the opportunity to study
different types of quantummodels, well established already inmany-body physics [5–7].

Parameters such as the depth of the periodic trapping potential or the lattice geometry can be tunedwith a
high level of control in experiments.Moreover, the interaction strengths can also be fully controlled via so-called
Feshbach resonances [8], giving the possibility of realization of repulsively and attractively interacting systems
[9]. The latter allows for an experimental study of superfluid states [10–12].

Typically, a systemof ultracold atoms is located in an external potential, for instance in a harmonic trap. This
potential introduces some effective site-dependent chemical potential and non-homogeneous distribution of
the particles in the system. As a consequence, non-uniform superconducting order parameter is expected. The
system can be studied theoretically via severalmethods. In this paper, we compare the results obtainedwithin
the LocalDensity Approximation (LDA) and the self-consistent Bogoliubov–deGennes (BdG) equations, for a
systemof an ultracold attractive fermionic gas loaded into a one-dimensional (1D) optical lattice, put in a
harmonic trap.

The paper is organized as follows: first, we shortly introduce themodel as well as the abovementioned
methods (section 2). In section 3, we present and discuss numerical results. Finally, we summarize in section 4.

2.Model and techniques

We investigate a fermionic gas loaded onto a one-dimensional lattice, in a harmonic trap, which is schematically
illustrated infigure 1. The systemunder consideration can be described by theHamiltonian:
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where sci
† ( sci ) describes the creation (annihilation) operator of a particle in the site i and of spin s =  ,{ }.

For simplification, we assume only hopping between the nearest-neighbor sites, i.e., ºá ñt ti j, .U<0 is the on-
site pairing interaction.μ0 is the chemical potential of the trapped gases, determining the total number of
particles in the system,while m m= + V ri i0 ( ) is an effective on-site chemical potential. V ri( ) is the trapping
potential, typically given in harmonic form, i.e., ~ -V r ri0

2( ) , where r0 is the center of the trap. The interaction
term is treatedwithin themean-field approximation:
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whereD = á ñ c ci i i is the s-wave superconducting order parameter (SOP). Hence, themean-fieldHamiltonian
in real space takes the form:
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2.1. Local density approximation solution
The LDAmethod is based on an assumption that, locally, the systembehaves like a uniform gas [1, 2]. The
parameters of the systemdepend solely on the value of the particle density = + n n ni i i (i.e. the average
number of particles), at each point i of space [13, 14]. Hence, the local SOP is defined only by m=n ni i( ). In the
presence of the trapping potential, local lattice potential is given by m m= +n V ri i i0( ) ( ), calledThomas–Fermi
equation [1, 2]. The chemical potentialμ0 isfixed by the condition å =n Ni i , whereN is the total number of
particles in the system. In a general case, the functional mD º D = Dni i i( ) ( ) can be found starting from the
solution for the homogeneous system, i.e.,D = D =n ni i( ), which gives m mD = D =i i( ).

First, let us shortly describe derivation of the equationswhich are useful in the LDAmethod [15, 16]. In the
case of a homogeneous system (m mºi andD º Di ), theHamiltonian(3) takes the following form in
momentum space:

å å å= + D + - D
s

s s  -   c c U c c h c U. . , 4k k k
k

k k
k

MF

k

2*( ) ∣ ∣ ( )†

where m= - - t k2 cosk ( ) is the single-particle dispersion relation of the one-dimensional system.Here, it
should be noticed that the presented derivations do not depend on the lattice dimensionality. Using anti-
commutation relation, the first term can be rewritten as:
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s s      c c c c c c1 . 5k k k k k k k k k
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This allows us towrite down theHamiltonianMF in theNambunotation:
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where F =  - c c,k k k( )† † are theNambu spinors. The system can be solved using the Bogoliubov transformation:
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where g† and γ are the quasiparticle operators. The spectrumof theHamiltonian is given by l =  + D k
2 2 ,

while

Figure 1. Schematic representation of fermionic gases on the lattice in a trapping potential. The atomswith spins  and  (orange and
blue color, respectively) can tunnel between nearest-neighbor lattice sites with the hopping amplitude t. The on-site interaction
strengthU between atoms can also be tuned via Feshbach resonances. The trapping potential introduces an effective site-dependent
chemical potential and non-homogeneous distribution of atoms in the system.
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Hence, the coefficients uk and vk satisfy the condition: + =u v 1k k
2 2 . The energy of the system is determined

from the grand-canonical potential W º - -k T ln Tr exp k TB
MF

B( [ ( )]), while the SOP value is determined
from its globalminimum. In the absence of a discontinuous phase transition, theminimumof energy
corresponds to ¶W ¶D = 0 or, equivalently:
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k
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The above equation is called the gap equation. Here, w w= + -f k T1 exp B
1( ) [ ( )] is the Fermi–Dirac

distribution at temperatureT, whileN is the number of states. Similarly, the occupations = á ñs s sn c ck k k
† can be

found as:
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which is equivalent to må = -¶W ¶s snk k . As a result, one canfind values of mD( ) and mn( )within the LDA
method.

2.2. Bogoliubov–deGennes solution
In the case of the non-homogeneousHamiltonian(3), the system can be solvedwithin theBogoliubov–Valatin
transformation:

å g s g= -s s s s sc u v , 11i
n

in n in n*( ) ( )¯
†

where g sn and g sn
† are the quasi-particle fermionic operators and s s= -¯ . The above transformation can be

treated as an extended version of the transformation(7) in real space. If theHamiltonian is diagonalized under
the transformation(11), i.e., g g= å s s s s MF

n n n n
† , the relations [17]:
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hold such that one straightforwardlyfindsBogoliubov–deGennes equations [18] (called alsoBlonder–Tinkham–

Klapwijk equations):
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where d m d= - -s á ñH tij i j i ij, is the single-particleHamiltonian and dD = DUij i ij are the on-site SOPs.Due to
the symmetry of the BdG equationswith respect to spin inversion, we can find an identity relation between
eigenpairs:
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The SOPs can be found self-consistently as:
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In a similar way, the site-dependent average number of particles, = + n n ni i i can be determined, where:
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2.3. Numerical implementation
As has been pointed out in the previous paragraph, the chemical potential m0 of the system in the trapping
potential is fixed by the total number of particlesN. Next, the solution of the systemwithin the LDAmethod is
defined by the effective potentialμi given by the Thomas–Fermi equation.Hence, the corresponding SOPΔ can
be found byminimization of W D( ) at fixedμi [19–21]. In fact, this way is equivalent to the one inwhich
equation (9) should be solved [22]. The huge advantage of thismethod is based on the fact that it is relatively
simple to implement and quite quickly solvable even for a trapped system, due to an efficient procedure of
finding the solution for a homogeneous system. For instance, in the two-dimensional (2D) case, the solution (the
minimumof the grand canonical potential) can be found for the systemwith around a thousand sites [21].
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In turn, the self-consistent solutionΔi (15) and sni (16) of the BdG equations (13), in the presence of the
trapping potential, can be found onlywhen all eigenpairs are known.Hence, the BdG equations are associated
with the exact diagonalization of theHamiltonian inmatrix form,which can be found numerically using one of
the available numerical libraries, e.g. LAPACK [23], Intel MKL [24] orMAGMA [25, 26]. However, thismethod is
very computational time-consuming∼N3 and leads to a limitation in the system sizeN. This problem can be
partially solved by using the sparsematrices storage implemented in somemodern softwares, for instance
ARPACK [27].Moreover, there exist some iterativemethods for solving the BdG equations [28–32], based on the
kernel polynomialmethod [33]. For instance, in the Chebyshev–Bogoliubov–deGennesmethod, the Chebyshev
expansion ofGreen’s functions is implemented. This type ofmethods allows to study the large size systems, even
with hundreds or thousands sites [32].Moreover, in some physical problems, it is reasonable to limit the
number of eigenpairs to only fewnearest ones to ‘zero energy’ (i.e. the Fermi level). This issue is implemented,
e.g., in FEAST [34] and it can be applicable to topological edge states investigations, for instance.

3.Numerical results and discussion

3.1. Spin-balanced system
Here, we describe the balanced system case, whichmeans the average number of particles with opposite spin in
each site is equal ( = n ni i ). Due to the fact that the average number of particles ni in each site is determined by
the effective chemical potentialμi, to perform the calculationwithin bothmethods, the chemical potential is
discretizedwith the parametrization: m m= + V ri i( ).

Figure 2 shows n versusμ andΔ versusμ dependences, obtainedwithin LDA calculations. In the case of a
one-dimensional system, the band edges are at m = t2 . AtU/t=0, the chemical potential changes from- t2
to t2 , which corresponds to thefilling n=0 and n=2 at the band edges. The SOP is equal to zero for the non-
interacting system.With increasing on-site interaction, the SOP increases. For intermediate couplings, the
chemical potential drops below the lower band edge, which, according to the Leggett criterion [35], indicates the
BCS-BEC crossover [36]. Found values of the n(μ) andΔ(μ) can be used as a solution of the system for a given
U<0 from the LDA approach.

Figure 3 shows results in the case of the system in a harmonic trap, = -V r V r ri i0 0
2( ) ( ) .Wefix

= ´ -V t 15 100
6. The average number of particles ni, obtainedwithin these twomethods, is comparable for

the chosen parameters. A similar behavior is observed for the SOPΔi in the center of the trap.However, the
situation looks differently at the edge of the harmonic trap (insets). Namely, LDA gives significantly different
solutions for the SOP from those obtainedwithin the BdGmethod at relatively small attractive interactionsU

Figure 2.Average number of particles n (blue) and superconducting order parameterΔ (green) as a function of the chemical potential
μ for different values of the pairing potentialU<0, atfixed = -k T t 10B

4. The results were obtainedwithin the LDA approach.
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(top panel). A similar behavior has been observed in the case of a spin-imbalanced system inwhich
unconventional pairing [37–39] can be realized at the edge of the system.

It is worth emphasizing that the LDA is a reliable approachwhen the gradient corrections are relatively small.
In turn, the BdG solutions in each site depend on the rest of the system via equations (13) and(15). Hence, the
BdGmethod is a better approach to describe the systemunder consideration.Moreover, the LDA can also fail in
the description of the system in a strong anisotropic trap [40].

3.2.Other applications and limitations
The theoretical predictions within the LDAmethod are in relatively good agreement with experimental results
[41–44]. Thismethodwas already successfully implemented in the context of trapped ultracold quantumgases
[37, 40, 45–47]. However, the LDAmethod has some limitationswhich can be lifted by applying the BdG
technique. Below, we give two examples of the systems forwhich the LDAmethod fails.

3.2.1. Spin-imbalanced systems
Bothmethods under consideration can be applied for a spin-imbalanced system, i.e., when ¹ n ni i [13, 48].
This corresponds to the experimental setupwith a two-component Fermimixture, with unequal number of
atomswith opposite spins [49–51]. This leads effectively to the substitution  - å -     h c c c ci i i i i( )† † ,
where h is the Zeemanmagnetic field inducing the spin-imbalance. In the case of the LDAmethod, this is
equivalent to the substitution s = -s   hk k k . Hence, an additional condition is needed in the numerical
calculations, i.e. d = å - N n ni i i( ). Here, the - n ni i corresponds to themagnetization at i-th site. It is
worthmentioning, that the symmetry of the BdG equations, given by equation (14), is preserved.

In theweak coupling limit, at a large spin imbalacne (i.e. polarization) [22, 38], the Fulde–Ferrell–Larkin–
Ovchinnikov (FFLO) phase [52, 53] can occur. In this case, the SOP is characterized by oscillations in real space
and at non-zero local polarization [13, 54]. If the polarization is equal to zero or low, the connection between the
phase diagrams of the systemwithout a trapping potential and in the presence of the harmonic trap [55] exists, in
the LDAmethod [22]. Unfortunately, the LDA approach cannot account for the oscillating character of the SOP
aswell as the oscillations of the average number of particles in the FFLOphase [13, 56]. A similar problemhas
been observed for the spin-imbalanced gap [57] estimatedwithin the LDAmethod and theDensityMatrix
RenormalizationGroup (DMRG). In this case, the oscillating character of ni at relatively low polarization has not
been reproducedwithin the LDAmethod.Moreover, the LDA calculations underestimate critical parameters of
the system,with respect to the results obtainedwithin theDMRG [57] or the BdG approach [22].

Figure 3.A comparison of the results obtained from the BdGmethod (solid lines) and the LDA approach (dashed lines). Black dashed
line shows the effective chemical potentialμi, while red (yellow) and blue (light blue) solid (dashed) lines correspond to the BdG (LDA)
results. Inset shows the comparison of results for BdG (red line) and LDA (blue squares) approaches around the edge of the system.
The numerical simulations were performed at = -k T t 10B

4.

5

J. Phys. Commun. 4 (2020) 055006 ACichy andAPtok



The situation can be evenmore complicated in the two dimensional systems. In the case of the harmonic
trap, the additional SOP oscillations along the radial direction have been reported [37, 58–60]. However, for the
toroidal trap, the oscillations of the SOP can be function of angle, due to rotational symmetry of the system
[61–63]. The combination of these two types of oscillations can be expected [64] as well. This case shows an
advantage of the BdG technique in the comparison to LDA, i.e. the spin-imbalanced systemswith
unconventional superconducting phases.

3.2.2. Non-homogeneous systems
The strongly inhomogeneous systems, e.g. systemswith long-rangemagnetic or charge orderings or disordered
systems are examples for which the LDAmethod fails. Apart from the above systems, one shouldmention
ultracold fermionic gases or the condensedmatter systems [65]. Here, the impurities [66–68] or vortices [69–71]
play the role of inhomogeneity. It is worthmentioning the superconducting systemswith spin-density (SDW) or
charge-density (CDW)waves coexistence [72–75]. The ‘local’ disorder in the system influences on the properties
of the system. Because of the presence of inhomogeneity with ‘long-range’ impact on the system, the LDA
method can not be used. In such cases, only the BdG technique is suitable [65].

4. Summary

In this paper, we studied an ultracold fermionicmixture loaded into a one-dimensional lattice, put in a
harmonic trap.We briefly compared the LocalDensity Approximation and the self-consistent Bogoliubov–
deGennes equations—themain assumptions, implementations and limitations of both of thesemethods.We
have shown that both approaches give comparable results in the case of relatively large paring interactionsU. For
smallerU, the results for the superconducting order parameterΔ can be significantly different, especially in the
case of a small density of particles, i.e. smallfilling at the edge of the system.Concluding, the results obtained
within the LDAmethod can be treated as a starting point for themore accurate BdG technique. One should be
aware of the LDAmethod limitations. Thismethod is strongly unrecommended to use for spin-imbalanced as
well as strongly inhomogeneous systems.
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