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A B S T R A C T

From the last decade, additive manufacturing (AM) has been evolving speedily and has revealed the great
potential for energy-saving and cleaner environmental production due to a reduction in material and resource
consumption and other tooling requirements. In this modern era, with the advancements in manufacturing
technologies, academia and industry have been given more interest in smart manufacturing for taking benefits
for making their production more sustainable and effective. In the present study, the significant techniques of
smart manufacturing, sustainable manufacturing, and additive manufacturing are combined to make a unified
term of sustainable and smart additive manufacturing (SSAM). The paper aims to develop framework by com-
bining big data analytics, additive manufacturing, and sustainable smart manufacturing technologies which is
beneficial to the additive manufacturing enterprises. So, a framework of big data-driven sustainable and smart
additive manufacturing (BD-SSAM) is proposed which helped AM industry leaders to make better decisions for
the beginning of life (BOL) stage of product life cycle. Finally, an application scenario of the additive manu-
facturing industry was presented to demonstrate the proposed framework. The proposed framework is im-
plemented on the BOL stage of product lifecycle due to limitation of available resources and for fabrication of
AlSi10Mg alloy components by using selective laser melting (SLM) technique of AM. The results indicate that
energy consumption and quality of the product are adequately controlled which is helpful for smart sustainable
manufacturing, emission reduction, and cleaner production.

1. Introduction

Nowadays, sustainable manufacturing is a more competitive ap-
proach for manufacturing enterprises as its execution can support
producers to accomplish complete development plans, decrease re-
source consumption and pollution along the entire lifecycle [1]. In this
advanced production era, the industry and academia have been dis-
cussing and focusing on the implementation of smart manufacturing in
their arena of research and manufacturing. The recent improvements in
the smart enabling technologies, such as Internet of Things (IoT) [2],

Artificial Intelligence (AI), Cyber-Physical System (CPS) [3], Big Data
Analytics (BDA) [4], Cloud computing and manufacturing [5], Digital
Twin (DT) [6], 5G [7], etc. [8] have significantly strengthened the
progress of smart manufacturing. Smart manufacturing can make the
industry more sustainable, productive, and profitable [9].

Additive manufacturing (AM) is an evolving technology for today's
manufacturing enterprises [10], [11]. AM is categorized according to
various material states, which include liquid, powder, wire and fused
material [12], [13]. When categorized by considering materials, a
variety of polymers [14], ceramics [15], metals and alloys [16], airy

https://doi.org/10.1016/j.rcim.2020.102026
Received 31 March 2019; Received in revised form 24 February 2020; Accepted 21 June 2020

⁎ Corresponding author.
E-mail address: zhangyf@nwpu.edu.cn (Y. Zhang).

Robotics and Computer Integrated Manufacturing 67 (2021) 102026

0736-5845/ © 2020 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/07365845
https://www.elsevier.com/locate/rcim
https://doi.org/10.1016/j.rcim.2020.102026
https://doi.org/10.1016/j.rcim.2020.102026
mailto:zhangyf@nwpu.edu.cn
https://doi.org/10.1016/j.rcim.2020.102026
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rcim.2020.102026&domain=pdf


structures [17], composites [18], functionally-graded materials [19]
and multi-phase materials [20] are used for various type of AM pro-
cesses. With a growing emphasis on sustainability and cleaner pro-
duction, AM proposes a significant worth in relation to decrease buy-to-

fly ratios. AM can be applied anywhere in the product lifecycle [21].
AM is claimed as green technology which holds a lot of potential in
enhancing effectiveness of materials, dropping life cycle effects, and
permitting better engineering functionality correlated to traditional

Abbreviations

3D three dimensional
5G 5th generation technology
3DP 3D printing
AA artificial aging
AB as-built
AI artificial intelligence
AM additive manufacturing
ANN artificial neural networks
ASTM American Society of Testing and materials
BDA big data analytics
CAD computer aided design
CAE computer aided engineering
CAM computer aided manufacturing
CAPP computer-aided process planning
CC cloud computing
CM conventional manufacturing
CP cleaner production
CPS cyber-physical systems
DM data mining
DMLS direct metal laser sintering
DSS decision support systems
DT digital Twin
EISs enterprise information systems
EOL end of life

ERP enterprise resource management
FDM fused Deposition Modeling
GA genetic Algorithm
IIoT industrial internet of things
IoT internet of things
MES manufacturing execution systems
MOL middle of life
OM optical microscope/ microscopic
PDKM product data & knowledge management
PDM product data management
RFID radio frequency identification
SAM sustainability of additive manufacturing
SCM supply chain management
SEC specific energy consumption
SEM scanning Electron Microscope
SHT solution heat treatment
SL/SLA stereolithography
SLM selective Laser Melting
SLS selective laser sintering
SM smart manufacturing
SSAM sustainable and smart additive manufacturing
SSM sustainable smart manufacturing
SVM support vector machine
UHF ultra-high frequency
WIP work in process

Fig. 1. A route map of sustainable manufacturing milestones [10].
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approaches, with a minimum requirement of specialized tooling in the
fabrication of a product, quick tooling manufacture, and material wa-
stage is also reduced [22]. Furthermore, AM has reduced cost and
processing time for customized and low-volume components produc-
tion.

Smart manufacturing (SM) is an innovative, service-oriented, and
networked manufacturing model, which progressed from, but extends
beyond, conventional manufacturing (CM) and service methods, and
integrates various cutting-edge technologies such as IIoT, AI, BDA, CPS,
CC and DM [23]. In the SM environment, there are lots of monitoring
and control points organize along entire manufacturing processes, like
from delivery of raw materials to shop-floor to final delivery and
packaging of the products [1].

Consequently, a vast amount of manufacture data is produced and
collected. Producers can investigate these data by using BDA to enhance
the performance of manufacturing and management of the whole pro-
duction processes for complex products, such as optimizing process
parameters, reducing process flaws, improving product quality and
productivity, etc. Such managerial improvement and optimization may
significantly contribute to reducing energy consumption, material
waste, carbon emission, and environmental impact [24–27]. Currently,
theories and applications of the innovative ways of manufacturing can
be further studied and analyzed for better resource efficiency, e.g.,
collaborative manufacturing, AM, green supply chain, etc.

The product lifecycle management (PLM) comprises three stages,
which are beginning of life (BOL), middle of life (MOL), and end of life
(EOL). Majeed, et al. [28] proposed a BDA framework for process
analysis and optimization of AM and implemented it on the BOL phase
of AM. Brundage, et al. [29] analyzed environmental sustainability
calculation approaches to enable more precise decisions earlier in de-
sign phase of product life cycle. As previously discussed, AM and big
data both dealt separately in the manufacturing enterprises. There is
minimal work done in the combined form. SM and sustainable manu-
facturing are also a niche for AM industries. The sustainability in the
manufacturing enterprises was started about four decades ago, and the
route of sustainability for the subtractive and additive manufacturing is
shown in Fig. 1 [10].

It can be seen that manufacturing enterprises identify the sustain-
ability issue after a century of industrialization. After recognition, many
researchers have worked on sustainable manufacturing. With the de-
velopment in the AM technology, the efforts on the implementation and
adoption of sustainability of additive manufacturing (SAM) in AM en-
terprises have also been expedited. So, the AM leaders are interested in
benefiting their companies by effectively using SAM.

In the present paper, big data analytics, additive manufacturing,
and sustainable smart manufacturing (SSM) have combined to form a
new interdisciplinary research area, namely big data-driven sustainable
and smart additive manufacturing (BD-SSAM), as shown in Fig. 2.
Therefore, a framework of big data-driven sustainable and smart ad-
ditive manufacturing (BD-SSAM) is proposed, which is an initial step for
the development of smart manufacturing environment in the additive
manufacturing enterprises. This framework is applied for the BOL phase
of whole product life cycle of AM process. Also, very supportive of AM
enterprises and produces products with energy-efficient and working on
cleaner production strategies for the environment.

The paper structure is mentioned as follows. In Section 2, a detailed
literature survey is conducted for BDA, AM, and SSM. In Section 3, the
overall framework of BD-SSAM is established. Section 4 describes the
key enabling technologies of SSAM. In Section 5, the benefits of the
framework are briefly mentioned. In Section 6, an application scenario
of the additive manufacturing industry is presented. Section 7 explains
the results and discussions of the case study. The managerial implica-
tions of the framework are presented in Section 8, and in Section 9,
conclusions with future research direction are explained.

2. Literature review

There are five subsections which are categorized as follow:

• Additive manufacturing and its qualification.

• Sustainability of additive manufacturing.

• Smart manufacturing and its key enabling technologies.

• Big data and its architecture in smart manufacturing.

• Research Gaps.

2.1. Additive manufacturing and its qualification

AM was established about three decades ago, alias as rapid proto-
typing (RP), additive layer manufacturing, layer-based manufacturing
(LBM), stereolithography (SL), 3D printing, etc. [30]. ASTM
characterized AM into seven categories as vat photopolymerization,
material jetting, binder jetting, powder bed fusion, material extrusion,
directed energy deposition and sheet lamination [30], [31].

The quality of AM products is characterized by dimensional and
surface quality, mechanical properties, hardness, densification, and
residual stress behavior. Numerous research work is done on the qua-
lification of different materials components by applying different kinds
of AM technologies as per requirement. Previous researchers’ studies
have shown that for metal AM processes, appropriate combinations of
process parameters such as scan speed, laser power, hatch distance,
layer thickness, etc. influence on above-mentioned quality character-
istics. Most of the research is focused on the manufacturing of fully
dense parts; it means that the relative density is nearly equal to 100%.
But it is difficult to achieve almost 100% or above 99% relative density
in every material in every AM technique [13]. So, the most commonly
used AM technique in which the relative density is higher than 99% is
selective laser melting (SLM), which belongs to powder bed fusion
(PBF) technology of metal AM.

Mumtaz and Hopkinson [32] investigated that the high scan powers
persuaded to reduce surface quality, and comparatively low scanning
speed is mostly preferred because of the longtime permits the melt pool
to restructure and attain a smooth surface. Islam, et al. [33] presented a
comparative experimental study on the dimensional accuracies of fab-
ricated parts of two broadly used AM techniques and the results ex-
posed that in both processes, the primary reason of dimensional dis-
similarities was the volumetric changing of the process, and SLA
accuracy was better than PBP produced parts. Wang, et al. [34] ex-
plained that scanning track characteristics were very critical for at-
taining a successful surface finish on the SLM products. Relvas, et al.

Fig. 2. Combinations of research of BDA, AM, and SSM.
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[35] investigated a comparison study on the 4 AM processes SLA, SLS,
FDM, and 3DP for the dimensional and geometrical accuracy, and
concluded that the worst dimensional performance of all the AM pro-
cesses was from 3DP, but the geometrical performance of 3DP com-
pared to other processes was in favorable condition.

Calignano, et al. [36] investigated the influence of main process
parameters on surface roughness of DMLS, built AlSi10Mg alloy spe-
cimens, and analyzed that scan speed had the highest impact on surface
roughness, also described that the surface roughness could be mini-
mized by shot peening. Delgado, et al. [37] evaluated DMLS and SLM
built parts mechanical properties and resulted that part mechanical
performance is inversely proportional to layer thickness.

2.2. Sustainability and additive manufacturing

With the progress in sustainable manufacturing, the sustainable
development of the AM industry is also vital, and researchers have in-
fluenced the SAM for implementation and adoption in the AM en-
terprises [10]. The development route of sustainability for subtractive
and additive Manufacturing industries is shown in Fig. 1. Previous re-
searchers have correlated the sustainability of AM or other processes
with energy consumption and its environmental effects [38]. Jawahir,
et al. [39] presented the 6R concept (i.e. reduce, redesign, recover,
remanufacture, recycle and reuse) for three main dimensions of sus-
tainability, which are environmental, society and economy as shown in
Fig. 3. The environmental effect of AM is further divided into three

main aspects which are, resource consumption, management of waste
and controlling pollution which are shown in Fig. 3.

Material consumption and energy consumption are mainly related
to the resource consumption of the AM industry. In comparison to CM,
the AM processes material efficiency is better, but the energy con-
sumption is more due to low productivity and other accessories re-
quirements of different AM processes [40]. Peng et al. [10] studied the
SAM, and discussed the SAM with the main concentration on energy
and environmental effects, and also predicted that the most crucial
feature for SAM is resource consumption. By the implementation of AM
techniques, there is a considerable saving of material by reducing
waste; sometimes it reaches more than 90%. The pollution is also
controlled by applying AM technologies because there are no cutting
fluids, lubricants, etc. used by AM processes, which make the en-
vironment clean and step to green production. From the life cycle
perspective of AM products, there is very little work done, and there is a
requirement to work on the long-term influence of AM on the en-
vironment [41].

Energy consumption is a critical approach to calculate the sustain-
ability of AM technology [42], [43]. Huang et al. [44] calculated the
life-cycle energy and greenhouse gas emissions savings possibility of
AM techniques for aerospace components. A new methodology of multi-
flow consumption of materials, fluids, and energy was investigated by
Le Bourhis et al. [45] on a direct laser solid forming (DLSF) technique of
AM, and the flow of energy is based on the energy consumption during
laser system, cooling system, and motor drives. Ford and Despeisse [46]

Fig. 3. The three dimensions of SAM [10].
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investigated the implementation of AM from the perspective of the life
cycle and concluded that sustainability benefited in the redesigning of
product, processing of input material, manufacturing of the product,
and product reuse by remanufacturing of the AM industry. Gebler et al.
[47] analyzed the life cycle perspective of AM and resulted that AM has
potential for reduction in costs, energy, and CO2 emissions, and also
predicted that cost saving of $113 ~ $370 billion till 2025 due to re-
duction in material consumption with reduction in the supply chains.
Mani et al. [48] and Chen et al. [49] defined the potential benefits of
sustainability of AM which are reduce wastage during production, op-
timization of products and creation of lightweight structures, reduction
in material and energy consumption, reduction in the supply chain,
reduction in inventory management, etc. Wits et al. [21] investigated
the sustainability of AM from end-user perspectives and concluded that
AM is a more sustainable substitute from maintenance, repair, overhaul
(MRO) or replace point of view.

2.3. Smart manufacturing and its key enabling technologies

SM is adopted by different industries and manufactures, and es-
tablished its significant enabling technologies which are utilized to
report data acquisition, storage, communication, processing, analysis,
the discovery of knowledge and pattern [1]. The sustainability and
proficiency of the SM systems are enhanced with the provision of va-
luable and reliable data by using these enabling technologies of SM.
Some of the key enabling SM technologies are described as follows:

• Abell et al. [50] has defined that BDA is the method of investigative
vast and diverse data groups to expose hidden correlations, un-
known patterns, customer likings, market trends and further valu-
able material which can support organizations to enhance sustain-
ability, make more-informed business decisions and to initiative the
society on the way to the globular economy and also do sound
business decisions. Gunasekaran et al. [51] studied the influence of
BDA on sustainable and green SCM for the improvement of orga-
nizational performance. Tao et al. [52] designed a fiber channel (FC)
switch based on field programmable gate array (FPGA) and applied
due to its high speed, low latency, and high-performance transmis-
sion capacities. The FC switch higher capacity of communicating
and processing big data opens a bright perspective for SM.

• Data Mining (DM) is extensively used in manufacturing and service
industries for making decisions on the available data, and it is also
applied in a sustainable manufacturing environment. Köksal et al.
[53] studied and analyzed the applications of DM for improving the
manufacturing and product quality. With the development in DM
technologies, it is executed in various phases of the lifecycle, like
designing of product, production, maintenance, service, recycling,
etc. [54].

• For the advanced sustainable manufacturing and SM, the IoT sys-
tems are chiefly employed to monitor energy consumption, emis-
sions-reduction, and improving the efficiency of recycling during the
life cycle [55]. Shrouf and Miragliotta [56] established an energy
management system on IoT-based and concluded that this system is
beneficial to manufacturing company managers for making deci-
sions, and also helpful for sustainable manufacturing and energy
management.

• Lee et al. [57] developed a CPS framework in Industry 4.0 system
which was utilized in the production line of machine tools for in-
tegration of CPS in SM and concluded that CPS could be im-
plemented for improving product quality and reliability of the
system, reducing production downtime and optimizing production
planning and inventory management. Song and Moon [58] devel-
oped an architecture of cyber manufacturing systems (CMS) by
using CPS methodology and concluded that CMS has potential sus-
tainability benefits in comparison to conventional manufacturing
systems.

• 5G networking is a new emerging technology for the data-driven
industries, SM, smart cities and infrastructure management because
it will be possible to have many more devices working, reliably,
securely and uninterrupted in the similar zone [59]. 5G has several
benefits such as higher speeds, less latency, capacity for a larger
number of connected devices, less interference and better efficiency
[7]. As discussed above, it is very beneficial for the big data and
internet of things. For example, with 5G technology, more manu-
facturing resources and devices can be connected and to carry out
large scale communication. This is benefit to promote information
and knowledge share among heterogeneous manufacturing re-
sources and thereby to optimize the manufacturing service abilities
that involved in the proposed framework. Meanwhile, the ad-
vantages of 5G technology on higher reliability and less latency are
benefit to improve the real-time operation and control as well as
decision-making capabilities of SSAM processes.

2.4. Big data and its architecture in smart manufacturing

Laney [60] has defined the big data on the theory of 3Vs (i.e. Vo-
lume, Variety, and Velocity), which means that a great volume of data
is generated and collected, the speed of data collection and analysis is
high, and various types of semi-structured and unstructured data are
received for final processing. Big data is classified according to different
life cycle stages, which are BOL, MOL, EOL, on the systematic changing
like static and dynamic, and also categorized on a semi-structured,
structured, and unstructured basis. Recently, Ren et al. [1] conducted a
big data analytics review to support sustainable smart manufacturing
for the whole lifecycle and proposed a framework to deal with the fu-
ture challenges of smart manufacturing. Jiang et al. [61] used big data
based neural network to predict the printable bridge length in additive
manufacturing for reducing support material waste.

With the developments in the BDA, it has been applied by many
companies to improve their production, maintenance, services, etc.
Leitão et al. [62] described that challenges of the industrial and man-
ufacturing automation arena would be efficiently handled by applying
BDA due to its ability of management of enormous volume of rapidly
created data. Siemens [63] implemented big data for remote diag-
nostics services to investigate the operational behaviors of their power
plants from all over the world by taking 100,000 measurements.

2.5. Research gaps

From the literature review, there is significant progress in the field
of AM, SM, Sustainable manufacturing, and BDA, but all the fields were
discussed or investigated separately. Based on this, there are following
research gaps for SSAM which needs to be examined:

• A big data-driven framework in a combined form of additive man-
ufacturing and smart manufacturing is not available or discuss
previously, because both fields have been studied in parallel. So,
there is a need to develop a framework that jointly works and how
to establish a framework for BD-SSAM?

• In the SM environment for AM, an enormous amount of process
control and performance of product data is produced, and the most
vital is to extract valuable information from the big data, which can
be possible by applying BDA in Smart AM environment.

3. Big data analytics framework for sustainable and smart
additive manufacturing

With the developments in the information and manufacturing
technologies, there is a massive amount of data generated during AM
processes, which becomes a substantial challenge for conventional ar-
chitecture to handle it. With time, the requirement of sustainable and
smart additive manufacturing is developing, and there is a need for
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particular architecture which will help the AM companies’ engineers
and managers to improve their capability with the growing world
standards and to compete with the market demands. Considering the
previous literature survey and discussion, the role of BDA is very sig-
nificant and vital for manufacturing enterprises like additive manu-
facturing [64] due to its ability of collection and storage of data, pre-
paration, cleaning, reduction, integration and transformation of data
and the more vital phase of big data is the data mining. Then, decision
making is performed from the extracted knowledge of big data [65].

Based on the presented overview, an overall framework of BD-SSAM
is designed, which is shown in Fig. 4. By using the framework, real-time
and non-real time data of the BOL stage of product life cycle of AM is
determinedly monitored, controlled and captured. By the usage of
communication and network technologies, the gathered data can be
transferred and stored in databases. Furthermore, reliable and available
data after preprocessing is provided for supporting data mining and
decision making. There are mainly four phases of the developed fra-
mework which work in a closed-loop and interconnected with each
other. The details are mentioned in the upcoming subsections.

3.1. Perception and acquisition of big data for SSAM

It is the main layer of the framework, as shown on the top left of
Fig. 4. Firstly, the IoT devices such as smart devices, RFID readers, RFID
tags, smart sensors, etc. [66] are configured on the whole product
manufacturing cycle (i.e. smart design, smart production, smart main-
tenance and services, smart delivery) of the smart AM environment.
Then, the huge heterogeneous and multi-source data of AM such as
product planning and design, material and procurement, AM systems,
AM production control and status, product qualification, energy con-
sumption, products delivery, and customer feedback, maintenance and
services, products recovery, etc. are sensed and captured for further
evaluation. The smart sensors and calibration devices are used to con-
trol and monitor the AM system working and manufacturing of quality
products according to customer requirements. The product quality data
is also monitored and collected at each stage of production to the as-
sembly phase. Then, the standard communication procedures (i.e.
Modbus, intranet, Internet RS- 485/323, 5G, etc.) [66] are utilized to
transfer the large captured data for further processing in the next

Fig. 4. A BDA framework for SSAM.
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working layer of the framework.

3.2. Storage, preprocessing, integration and management of SSAM big data

The real-time and non-real-time data of the entire product manu-
facturing cycle of AM enterprises is collected, which composes of a
great amount of unstructured, structured and semi-structured data
[67]. The conventional data storage and management tools and tech-
nologies are not enough to further process and handle the too huge,
complex and complicated data effectively. Consequently, this layer is
supportive for the further proceeding of the storage disordered and
huge datasets or data cubes by using Extensible Markup Language
(XML), Not only Structured Query Language (NoSQL) and Distributed
Database system (DDBS)[68]. For the non-real-time product manu-
facturing cycle data processing, the Hadoop computing framework is
applied [68]. The real-time computing framework Storm is applied for
heavy real-time processing of AM product manufacturing cycle data
[69], [70]. In this layer, the flow of data for preprocessing and man-
agement is followed by the sequence mentioned below and also shown
in Fig. 4 (bottom left):

I Data storage method
II Data Cleaning method
III Data integration method
IV Data reduction method
V Data transformation method

Initially, AM product manufacturing cycle data are chosen to form a
data cube, and to construct a manufacturing cycle data warehouse so

that the SSAM big data could be integrated by pre-defined logics [71].
The established data warehouses are used to store and manage the
manufacturing cycle data cubes, and to describe the complex logic re-
lationship among massive manufacturing cycle data cubes. Next, the
generated manufacturing cycle data cubes have a great number of re-
dundancies, which is reduced by data cleansing operation. The general
models which are applied for data cleaning are information structure
model [72] and RFID-Cuboid model [73]. During cleaning operation,
set of manufacturing cycle data cube from manufacturing cycle data
warehouse is the input which gives the output in an organized set of
manufacturing cycle data cube that transmits significant information
about manufacturing cycle status.

Moreover, meta-models are developed to integrate the huge data
which consists of design, market, production, maintenance, dimen-
sional quality, product delivery, logistics, etc. [74]. The integrated data
sets are obviously still massive, which may be infeasible for data ana-
lyses. Consequently, a data reduction process is made to acquire a re-
duced illustration of the data set that is much smaller in volume, but it
must hold the veracity of the original data. Furthermore, the concise
manufacturing cycle data is transformed so that the subsequent data
mining method may be more effective, and the patterns found may be
easier to recognize [74]. Finally, the preprocessed SSAM big data are
stored in various above-mentioned data management systems such as
DDBS for further utilization in decision making.

3.3. Data mining and decision-making of SSAM big data

Throughout the entire product manufacturing cycle of AM en-
terprises, a huge amount of data is generated in the form of 4Vs

Fig. 5. Big data perception and acquisition framework of product manufacturing cycle for SSAM.
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(volume, velocity, variety, and value), which is challenging to in-
vestigate it by using the traditional methods of analysis. In this fra-
mework, an impressive technology that has potential to determine
hidden knowledge from the large AM product data sets is applied,
which is data mining models (e.g. clustering, classification, association,
neural network, prediction, etc.) [66]. By combining the AM product
processing analysis approaches and methods of big data mining [66],
valued information and knowledge can be revealed from these AM
product manufacturing cycle data sets. From these mined results, smart
and sustainable AM product decision makings for application services
will be provided to AM enterprise managers [66].

3.4. SSAM big data application services

This application services layer can be seen from the top right of
Fig. 4; big data application services are applied to deliver significant
real-time and non-real-time applications based on mined information
and knowledge for end-users [66], [74]. For the various manufacturing
cycle phases, numerous forms of application services are planned in this
layer of the framework. Specifically, sustainable and smart product
design, smart shop floor scheduling, optimization of AM process, AM
processing parameters optimization, reduction in energy consumption,
logistics optimization, sustainable and smart maintenance, predictive
maintenance, smart delivery, etc. are designed for SSAM, which is fa-
vorable for promoting CP strategy in the sustainable and smart AM
environment. By the implementation of smart decision making and real-
time feedback, the services mentioned above are applied in the AM
enterprises for efficient and sustainable smart production.

4. Key technologies for big data analytics sustainable and smart
AM

Big data of SSAM plays a vital role in the whole product life cycle of
AM enterprises. In the BOL, it is an important asset for innovative
products, and it can also reduce waste and emissions with the EOL
decision making which means that the product can be remanufactured
and reused. Though it is problematic to capture overall and real-time
data of product life cycle, particularly products’ data after being dis-
tributed to customers [75].

4.1. Big data perception and acquisition for SSAM

An overall framework model for heterogeneous and real-time pro-
duct manufacturing cycle, big data perception, and acquisition of SSAM
are developed which is shown in Fig. 5 [75]. The configurations of
several IoT and smart devices are the fundamentals for gathering het-
erogeneous, real-time and multisource data of fabricated products and
things of SSAM environment (Table 1). During the entire product
manufacturing cycle of SSAM process, IoT and smart devices are posi-
tioned at the manufacturing resources and main areas of the products in
the machine, workshop, and factory level (see in Fig. 5) [66].

Primarily, the RFID tags are configured adequately on the technical
documents and reports of quality, design, production of products and
maintenance of machines which play significant roles throughout the
product manufacturing cycle. Moreover, the RFID tags are configured
on the parts design and models for accurate tracking. RFID tags are also
deployed to different types of AM materials like powder, wire, and li-
quid which are used at different AM systems. RFID readers are installed
at different locations of the entrance of factory, CAD rooms, material
handling, warehouse, tool stores, laboratories, etc. The AM machines
are also properly tagged.

The energy consumption data capturing is also vital for the SSAM
and CP strategy. The energy consumption can be measured from the
power consumption of the AM systems which is equivalent to the
product of real time electrical current and voltage. Different smart
sensors and smart meters (i.e. temperature sensors, pressure sensors, Ta
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current sensors, voltage sensors, vibration sensors, etc.) are applied to
monitor and collect big data of temperature, pressure, energy con-
sumption, etc., during the whole production process. The log of the data
is maintained in the AM systems for the each second during the AM
processing for building of a product and it is also displayed on the
control panel on machine. By the IoT devices and sensors, the tem-
perature, gas, pressure, etc., data is continuously monitored and col-
lected.

Furthermore, the maintenance data of AM machines during the
product manufacturing process is also recorded by suitable smart sen-
sors and tags (see Fig. 4). Due to the implementation of the SSAM en-
vironment, some maintenance and malfunctioning issues of AM systems
are solved by the online internet or other sources like cloud computing.
The RFID tags and readers are also configured on the product inventory,
delivery and logistics sections for making the smart delivery. Moreover,
through the standard communication protocols [66], such as RFID, RS-
232/485, Internet, Intranet, WLAN, Modbus, 5G, etc. technologies, the
collected multi-source, non-real-time, and real-time data is transferred

to enterprises databases.

4.2. Big data mining and knowledge sharing for SSAM

Fig. 6 is the closed-loop big data mining and knowledge sharing
structure of SSAM, which comprises of the data and knowledge layer,
model layer, and objective layer.

4.2.1. Data and knowledge layer
Data and knowledge layer contain heterogeneous, multi-source,

real-time, non-real-time, and knowledge data of product manufacturing
cycle of SSAM which has four dimensions which are as follows:

• The dimension of data type contains the data of whole product
manufacturing cycle for the SSAM, such as AM design data, material
data, AM process data, market analysis data, customers’ demand
data, maintenance data, quality data, inventory data, delivery data,
energy data, etc.

Fig. 6. Big data mining and knowledge sharing structure for SSAM.
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• The dimension of data storage consists of various database en-
terprises which are used for storage of the heterogeneous data,
structured data, semi-structured data, and unstructured data, such
as DDBS, RDBMS, XML, NoSQL, etc.

• The third dimension of this layer is data processing. Different data
processing computing software is applied for the cleaning, reduc-
tion, integration, and transformation of real-time and non-real-time
captured data [66]. The mainly applied computing systems are
Hadoop, Storm, MapReduce, etc.

• The final dimension of this layer is the knowledge data, which is
very helpful for deciding on the available data from the previous
knowledge sharing. This dimension contains data of design optimi-
zation, optimized processing parameters, quality improvement data,
energy optimization (reduction in energy consumption and carbon
emission), maintenance data, data relevant to the processing of
different materials in the AM, and other various types of data.

4.2.2. Model layer
The model layer is also identified as a method layer which princi-

pally discusses the data mining models. Data mining models can gen-
erally be characterized as descriptive and predictive [53]. Descriptive
data mining models include summarization, clustering, and association
general model. Summarization models used correlation analysis and
scatter plots for determining the relationship between the input and
output variables [53]. Association general model can be used to assess
the AM product design scheme, and to investigate the quality factor of
AM product, etc. Predictive DM modeling can be characterized as sta-
tistical-based (S-based) methods, DT-based algorithms, ANN-based al-
gorithms, classification methods, etc. [53] The prediction general
model can be used to estimate the maintenance cycle in AM systems.

Furthermore, the other DM models include genetic algorithms (GA),
Bayesian estimation, Apriori algorithms, support vector machine
(SVM), regression analysis, etc. Then an appropriate model of data
mining will be nominated to extract data from the data layer and dis-
covering knowledge from them.

4.2.3. Objective layer
The objective layer is also known as an application or demand layer.

On the basis of review of sustainable smart manufacturing [1] and
additive manufacturing [10], in present investigation, the manu-
facturing application of the objective layer principally comprises of
improving product design, optimization of processing parameters, im-
proving productivity, product quality improvement, optimizing AM
process, reducing energy consumption, and improvement in material
management. This layer also includes improving delivery and shop-
floor logistics, providing predictive maintenance service, reduction in
carbon emissions, reducing environment effects, etc.

Conferring to diverse demands of the objective layer, appropriate
data mining model, and real-time data of the product manufacturing
cycle are carefully chosen to carry out the knowledge discovery [66].
For example, the processing parameters can be optimized and predicted
by determining the mining algorithm like a regression, genetic algo-
rithm or artificial neural network.

The big data mining and knowledge sharing analysis of the SSAM
environment illustrate that closed-loop structure begins from applica-
tion and knowledge sharing objectives, and in conclusion, meets ap-
plication objectives [66]. Initially, application objectives are predicted
in the data and knowledge layer. Then, by different goals or demands,
the adaptive data mining models are designated and developed. The
data mining models have been selected on the main rule which means
the data mining models have abilities of store-memory, evolution, and
self-learning. Moreover, appropriate real-time data is extracted to im-
plement data mining. Lastly, information and knowledge are attained to
meet the application objectives of AM enterprises [28], [66].

5. Benefits of SSAM

The leading-edge technologies applications are growing con-
tinuously in the current AM environment to make it SSAM, which may
be produced a massive amount of data during AM product designing,
AM fabrication processes, and maintenance of the product, etc., and it
can be composed during the whole product manufacturing cycle. The
following benefits can be extracted by the customers and manufacturers

5.1. Market demands perception and prediction

With the revolution in manufacturing style from mass to customized
production, determining customer demands and preferences have
grown gradually significant for the manufacturers [1]. Mourtzis [76]
focused on the aspects that affect manufacturing network performance
for mass customization and also presented the work relevant to the
design, planning, and control of manufacturing networks in the field of
mass customization and personalization.

AM products demand increased due to its ability to build unique and
complex structure parts. Precise perception and prediction of customers'
demands and preferences are productive resources for producers to
make their products better fit the requirements of customers, and to
make sophisticated faithfulness and revenue. The huge capacities of
data associated with customer demands (e.g., customer behaviors and
evaluations, user feedback, online reviews, and sentiments, etc.) can be
gathered and integrated from numerous sources for mining actionable
visions by the use of big data analytics. These visions can be applied to
forecast market demands appropriately, and the probable market
magnitude, margin, the number of competitors and the level of dis-
tinction among AM products can also be predicted [1].

5.2. Improvement in product design

In the SSAM framework, the remote product manufacturing cycle
data that affect product design can be combined and investigated to
create imperative intuitions about enhancements and revolutions in the
AM product [1]. Topology optimized products have also been designed
with minimum material consumption and higher strength. Producers
have recognized that BDA is an effective tool for categorizing the
hidden requirements and cultivating the efficiency of selection about
several design substitutes [1]. So, smart products are redesigned ac-
cording to the feedback of the customer.

5.3. AM product quality improvement

The real-time data of AM resources (e.g., materials, operators, WIP,
etc.) can be monitored by the configuration of smart devices. There are
lots of quality control points organized along the manufacturing line,
and a huge amount of data are generated during the raw materials (i.e.,
powder, wire, etc.) provision to production workshop to the packing of
AM products for final delivery [1]. BDA is applied by AMmanufacturers
to discover supplementary methods to lessen faults of process and to
rising production, which can be obtained by applying several data
analysis algorithms and models to the manufacturing processes.
Moreover, BDA can be utilized to connect the process and equipment
level data to metrology data to make more precise predictions about
production failures [1].

5.4. Energy consumption control and reduction

In the current manufacturing scenarios, management of energy and
lessening of emissions are two essential responsibilities for any manu-
facturing enterprise (i.e., subtractive or additive manufacturing). With
the continuous implication of smart devices, meters, and sensors
throughout the entire manufacturing cycle of product and process, huge
size of real-time energy consumption data from manufacturing and
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operation process can be gathered [28], [66]. The energy consumption
data offer a huge potential to reduce energy consumption and to en-
hance the decisions of energy proficiency management. Big data inputs
can also help managers to recognize and calculate the wastage points
and to lessen or disregard them in real-time [1].

5.5. Intelligent predictive maintenance and services

Through IIoT, real-time data of the product manufacturing cycle can
be collected and evaluated, which would help to improve maintenance
and service decisions [1]. The AM product operation status data is
collected and communicated to the producer who is a vital asset for
maintenance decisions, and AM producers can investigate data to es-
timate indicators to control whether system performance is declining.
These investigations can support producers to precisely forecast when
the products may fail [1]. This may lead to intelligent predictive
maintenance and services.

6. Case study scenario

For the implementation of the proposed framework of BDA for
SSAM, a case study of the AM industry is demonstrated for proof of
concept. The principal objective of the case study was to show how the
proposed framework benefited the AM enterprises and how sustainable

and smart AM was done by applying advanced information and man-
ufacturing systems. The performance of the AM processes can be en-
hanced by the execution of proposed BD-SSAM framework, such as
design innovation, reduction in energy consumption, reduction in
processing time with enhancement in productivity, improvement in
product quality with optimizing processing parameters, etc. A full ex-
planation of application study is stated in the forthcoming sections.

6.1. Case description

The framework is implemented in a company, which is specialized
in the arena of AM technology and working on the different AM tech-
niques. The case company is Xi'an Ruite 3D Technology Co. Ltd.
(http://www.xaruite.com/), which has a wide range of AM systems for
manufacturing of products of metals, polymers, ceramics, etc. The
company is providing facilities of AM to their respected customers from
various industrial fields like automobiles, aerostructures, biomedicals,
electronics, customer goods, etc.

The objective of the case study is to demonstrate an association
between the implementation of SSAM big data analytic practices and
economic benefits for the AM company. So, we have considered the
BOL stage (product manufacturing cycle). The company has different
AM systems like SLM systems, SLS systems, FDM systems, etc. The
present case study was performed on the SLM 280HL systems, which is

Fig. 7. The overall framework of BD-SSAM for the application scenario.
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a product of SLM solutions, Germany.
The company has many new tasks to accomplished on time to meet

customer requirements. Previously, the company has produced pro-
ducts of titanium alloys, nickel alloys, steel alloys, etc. The company
has new tasks of fabricating parts of the pump from AlSi10Mg alloy. So,
it was also a pleasant task for us to implement our BD-SSAM framework
for manufacturing of AlSi10Mg alloy products in the company which
would be beneficial for it. Previously, the company provides different
products to their customers in a traditional business model like other
Chinese manufacturing companies. So, the company decided to trans-
form its conventional business model into a sustainable smart manu-
facturing model, which would be a system integration and service-
driven [1], [77].

6.2. BDA framework of SSAM for the application scenario

Firstly, the framework of BD-SSAM for the product manufacturing
cycle (BOL stage) is developed which is shown in Fig. 7.

6.2.1. Case study experimental methodology
Before going to the framework discussion, it is better to discuss the

experimental methodology of the case study. An SLM 280 HL system is
used for the manufacturing of products, which is shown in Fig. 8, and
also an energy monitoring system is shown on the right side of Fig. 8.
The SLM system is equipped with 02 fiber laser beams of 0.40 kW laser
power. The powder material is AlSi10Mg, which is broadly used in
automobiles and other industries. The powder morphology of AlSi10Mg
alloy is shown in Fig. 9, and its chemical composition is mentioned in
Table 2.

There are numerous types of processing parameters used in SLM,
but the most suitable and relevant parameters are laser power, scan
speed, hatch distance, and layer thickness. The combined effect of these
four processing parameters is called the Energy density, which is de-
noted as ED and described in Eq. (1).

=

× ×

E P
V h t( )D

L

s d l (1)

where PL is laser power, Vs is scanning speed, hd is hatch distance, and tl
is layer thickness.

The suitable combination of these processing parameters is very
significant for fully dense and good quality products with better
strength. For this case study, we were started from a single-track, then a
single layer, and finally fabricated bulk samples for parameter optimi-
zation. Additionally, the thin-walled specimens were produced for
further testing, and finally, the final product is manufactured. As above-

mentioned, initially the parameters and their levels were defined by the
preliminary experimentation on the single track, single layer and then
the multi-layer fabrication from the SLM process. Then, the full ex-
perimental study flowchart is shown in Fig. 10. The processing condi-
tions and parameter details are presented in Table 3.

6.2.2. Acquisition and sensing of AM big data
The AM production setup of the company is shown at the top of

Fig. 7. It can be observed that manufacturing is done in a closed-loop
structure, and all departments of the company are interconnected with
each other. All departments' data is continuously monitored and con-
trolled by the execution of different IoT devices at different locations
and positions according to their requirements (already discussed in
Section 4.1), and data is also gathered from other sources, which are
mentioned in Table 4. The closed-loop starts with the customers’ de-
mands. Then, the demands come to the production planning and con-
trol (PPC) department. The PPC department sees the requirement of the
customer if the product already manufactured from previous experience
and knowledge available, then the demand is forward to R & D de-
partment for drafting and issue of proper drawings and model, other-
wise the R & D of the new product required. Then, the models and
drawings are issued to production department for adequate manu-
facturing of the product.

During the production, the maintenance and services department is
interconnected with the production and other departments for proper
tackling of any malfunctioning of AM systems or any other related
equipment like pumps, compressors, electric supply, etc. After the
fabrication of SLM products, it is appropriately cut off from the sub-
strate by applying the wire EDM. Then, the different other processes
were performed on the product as per requirement such as sand-
blasting, stress-relieving, heat treatment, machining, shot peening, etc.

Furthermore, the surface and dimensional quality, strength, etc. of
the product is measured. Then, the qualified product goes to the fin-
ished goods area and finally it would be delivered to the customers.
Then, the customer's feedback is taken for further improvement of the
product or service of the company. For the all above discussion, a
considerable amount of multi-source, real-time, and non-real-time data
is collected, such as design, drawings, production, various processes,
quality, maintenance, energy consumption, etc.

For the collection of the big data of the whole product manu-
facturing cycle, various types of IoT devices like UHF RFID tags, RFID
reader, smart meters, smart sensors, the voltage sensor, the current
sensor, etc. are configured at various locations (Table 4). A massive
amount of data is also gathered from different external types of
equipment such as surface roughness meter, digital vernier caliper,

Fig. 8. Experimental system for fabrication of product and data acquisition.
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hardness testing machine, tensile testing, SEM, OM, etc. which are
applied for the qualification of the SLM product (presented in Table 4).
Using the devices mentioned above, processing parameters and SLM
products' real-time data can be sensed and collected.

During the SLM process, the data from different IoT devices and
sensors is monitored on the control panel, and stored in the SLM ma-
chine database system. The data is gathered for every second of SLM
processing and continuously monitored on the control panel screen. The
sampling rate of data display on the control panel screen is 5 s. Any
malfunctioning or variations in the sensor data is observed con-
tinuously, and tackled efficiently. The processing time, and energy
consumption data were also taken and monitored by the smart devices,
which are shown in Fig. 8.

Also, any malfunctioning in the SLM system parts, e.g. problem in
powder recoater which not properly placed powder during printing is
monitored and solved online by smart cloud computing network. It
means smart maintenance is performed during processing of SLM pro-
cess within a very short time.

After the accomplishment of the SLM process, the heat treatment
processes have been performed on the fabricated product according to
the final requirement and usage. Then, the dimensional and surface
quality of the SLM manufactured product has performed by applying
various dimensional measurement equipment. All the data of the pro-
cesses and devices as mentioned earlier have been gathered and sensed.

6.2.3. AM big data storage, management, and processing
A considerable amount of multi-source, real-time, and non-real-time

data of different data interfaces of design, material, SLM production,
quality, maintenance, etc. is communicated and transmitted through
the various data transmitted technologies like Intranet, Wireless,
Internet, etc. Distributed methods are applied for storage and man-
agement of the whole AM process data, but here the data was stored in
the SLM system and company PCs for the handling of unstructured,
semi-structured, and structured data.

For the present study, the company PCs have stored and managed
his previous data to manufactured products for their customers. For this
new task of AlSi10Mg products, the company needs R&D, which is
thoroughly described in the flowchart of Fig. 10. All the real-time and

non-time data is collected during all samples and products’ manu-
facturing. During manufacturing, all malfunctioning data of the SLM
system is also gathered. There were also performed different heat
treatment cycles like stress relieving, solution heat treatment, artificial
aging on the test specimens and the final product [78]. All data of the
heat treatments is also stored for future processing. The qualification
data of the test specimens is also stored.

It would be observed that key additive manufacturing responses
such as the densification, porosity, surface roughness, dimensional
quality, tensile strength, processing time, energy consumption, etc. are
influenced by processing parameters of laser power, scanning speed,
hatch distance and layer thickness. The overall big data is collected for
the a/m responses and processing parameters, which is further in-
tegrated and analyzed for sustainable and smart manufacturing.

6.2.4. AM big data mining and knowledge sharing
By using the BDA theories, the data mining models are developed,

which are applied for attaining hidden knowledge from the enormous
real-time and overall manufacturing phase big data. The optimization
of manufacturing phase of different responses and parameters are also
achieved. By uniting the knowledge with product data & knowledge
management (PDKM) or decision support system (DSS), the objectives
of the SSAM enterprise can be accomplished, and it can also be applied
to select more environmentally beneficial raw material and cleaner
energy [75].

It can be observed from the bottom right of Fig. 7 that the data
mining universal and specific models are developed according to sev-
eral requirements of AM enterprises. There are four kinds of general
models formed in this framework, which are GA, artificial neural net-
work (ANN), Pareto front, regression analysis. The GA model can be
applied to optimize the processing parameters and also investigate the
improvement in the AM product quality. The ANN general model can be
applied to predict the optimized energy consumption conditions and
even for the reduction or prediction of maintenance cycle.

Furthermore, different forms of particular data mining models are
also developed, like product design improvement, AM processing
parameters optimization, product quality improvement, energy con-
sumption optimization, prediction of maintenance, improvement in
productivity, etc. These data mining models have been constructed for
achieving specifically targeted objectives so that the associations
among BOL of AM big data, the unique models, and the data mining
results are ‘one-to-one’ [74]. For example, if the customer projects the
improvement of product quality, then the unique model of product
quality improvement is selected. For achieving this objective, the con-
trol processing parameters of the model are optimized, which have been

Fig. 9. AlSi10Mg powder; (a) morphology, (b) EDS analysis.

Table 2
Chemical Composition of AlSi10Mg alloy powder (EDS analysis).

%Al %Si %Mg %Fe %Sn %Mn

Bal 11.28 0.49 0.11 0.32 0.12
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given the results of excellent product quality; the obtained results are
stored in PDKM, whose knowledge is further applied in the future. The
other unique models also have similar establishing principles.

7. Results and discussions

In this section, the experimental results will be discussed step by

step by following the flowchart of Fig. 10. It starts from a single layer
and have been completed to the final product of the customer.

7.1. Results of the single-track scanning

SSAM framework work starts with defining the initial processing
parameters, which are best suited to AlSi10Mg material parts. From the
previous knowledge and literature survey, the two processing para-
meters are prime important for SLM process which are laser power and
scanning speed. We have initially defined the laser power from 0.06 kW
to 0.36 kW and scanning speed from 0.10 m/s to 1.10 m/s for printing
of single-track samples.

The results of the surface were observed on the optical microscope
(OM), which is shown in Fig. 11. In the SLM process, a moving heat
source is applied for the melting of material, which causes the flow of
material in the assigned path of the laser beam. Consequently, single
tracks during SLM solidify with a distinctive chevron pattern, which can
be seen on top of each track (see Fig. 11) [79]. The distinctive chevron
pattern represents the direction of motion of the heat source (in SLM is
laser beam), which is shown in optical micrographs of Fig. 11.

Fig. 11 shows the processing maps of a single-track for the SLM
processed AlSi10Mg powder. The laser power and scan speed have a
significant influence on the surface stability of the single track. The
analysis of single track could provide a solid basis for determining the
process window. Four types of zones existing in the single track were
identified as partial making, good consolidation, excessive balling, and
over-burning which are also shown in Fig. 11. The partial making and
excessive balling are presented by discontinuous tracks and the drops
formation, and the good consolidation is characterized by the con-
tinuous tracks [80].

The sets of processing parameters for the working powder express
geometrical characteristics and continuity of SLM tracks. The molten

Fig. 10. Overall flowchart for the experimental methodology.

Table 3
Control processing parameters with technical description of SLM system.

Experimental conditions Processing
parameters/
Conditions

Description / Values

General parameters (used in
all testing)

AM System SLM 280 HL (SLM
Solutions, Germany)

Powder Material AlSi10Mg
Atmosphere Argon inert gas
Oxygen content (%) <0.1%
Beam focus diameter
(mm)

0.08

Building direction Vertical
Scanning strategy 67 °Checkboard
Layer Thickness
(mm)

0.03

Single track printing (1st Exp) Laser Power (kW) 0.06 - 0.36 (6 levels)
Scan Speed (m/s) 0.10 - 1.10 (6 levels)

Single track printing (2nd
Exp)

Laser Power (kW) 0.30 - 0.40 (6 levels)
Scan Speed (m/s) 0.30 - 1.05 (6 levels)

Single layer samples Laser Power (kW) 0.32 - 0.40 (3 levels)
Scan Speed (m/s) 0.60 - 0.90 (3 levels)
Overlap rate (%) 0.20 - 0.35 (4 levels)

Multiple layers samples (Bulk
and tensile samples)

Laser Power (kW) 0.32 - 0.40 (3 levels)
Scan Speed (m/s) 0.60 - 0.90 (3 levels)
Overlap rate (%) 0.25 - 0.35 (3 levels)
Hatch distance (mm) 0.071 - 0.116

Thin-walled samples (Wall
thickness study)

Laser Power (kW) 0.32
Scan Speed (m/s) 0.90
Hatch distance (mm) 0.080
Wall Thickness
(mm)

0.50 - 5.0 (12 levels)

Thin-walled samples
(parameters
optimization)

Laser Power (kW) 0.32 – 0.38 (3 levels)
Scan Speed (m/s) 0.73 – 1.07 (3 levels)
Hatch distance (mm) 0.08 - 0.13 (3 levels)
Wall Thickness
(mm)

1.0 – 3.0 (3 levels)
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material builds a cylinder-like track due to surface tension. For con-
tinuous tracks formation, penetration into the substrate or the pre-
viously sintered layer has the additional stabilizing effect [81]. But
deep penetration causes keyhole, which is unacceptable in SLM because
it can stimulate porosities in the final SLM product due to the collapse
of molten pool and gas bubbles locked in the material. Balling is de-
pendent on scan speed and is built due to instability promoted by
higher scanning speeds and surface tension of material when using
large layer thickness powder. Surface tension plays an important role in
the crystal growth and porosity formation of metal during solidification
[82]. The mechanism of discontinuity, irregularities, distortion, and
balling-effect may be connected with granulomorphometric character-
istics of the powder and inhomogeneity in powder layer thickness,
thermo-physical properties of materials, energy input parameters in-
cluding laser power, scan speed, and spot size; melt hydrodynamics,
etc. [79].

It can be observed from Fig. 11 that the single tracks are non-con-
tinuous at the laser power of 0.06 kW and 0.12 kW, which would be
caused due to low laser energy which could not melt the powder
properly. Specifically, it can be seen at # 6 single tracks at a laser power
of 0.06 kW and a scan speed of 1.10 m/s (see Fig. 11). Stable zones of
single tracks are formed at a scan speed from 0.30 to 0.90 m/s and at
the laser power of 0.18 kW, 0.24 kW, 0.30 kW, and 0.36 kW (see
Fig. 11). At higher scan speed (1.10 m/s), the laser energy cannot melt
the particles completely and initiate balling effect, which leads to un-
stable and irregular tracks. At low scan speed (0.10 m/s), over burning
of the tracks occurs due to excessive energy exposed on the powder (see
Fig. 11). Consequently, stability of the single tracks is achieved by
optimizing the laser power and scanning speed, and proper layer
thickness deposition.

A single track is built not only from powder positioned directly
under the laser spot during the SLM process. The adjacent powder
particles are also involved in this process due to conduction through the
substrate and neighboring particles, scattering of radiation, capillary
phenomena, etc. [79]. The denudation zone, i.e., area without powder
after scanning of laser can be twice as large as the width of the track
[83], which describes the geometrical features of the tracks and finally
the morphology of layers. For stable single tracks, the widths of the
single line were measured, as shown in Fig. 12. It was found that width
of the single track varied from 37 to 288 μm. The track width decreased
with the reduction of laser power and the increase of scanning speed.
From the above analysis, it was found that the single tracks manu-
factured with laser power of 0.18–0.36 kW and scan speed of
0.30–0.90 m/s are stable. But, more stable results of single tracks were
achieved between 0.30–0.40 kW of laser power.

In the 2nd experimental design of the single-track, the laser power
was taken from 0.30 kW to 0.40 kW with an interval of 0.02 kW, and
scanning speed was chosen from 0.30 m/s to 1.05 m/s with an interval
of 0.15 m/s. The experimental design is based on full factorial DoE
design with six levels and two factors. By applying 62 full factorial
design, total single tracks with 36 combinations of laser power and scan
speed were printed on a substrate. Then, the fabricated single tracks
were observed with the OM of Olympus GX51, and the processing
parameters were more refined for further processing of making single
and multi-layer.

From the analysis of optical microscopic (OM) images, the width of
a single track is measured, which is from 95.42 to 210.56 µm, and the
results are presented in Fig. 13. From OM investigations, it was ob-
served that the smooth, stable, and continuous single tracks and their
width within good range are for the laser power from 0.32 kW to
0.40 kW and scan speed of 0.60 m/s to 0.90 m/s. For 0.30 kW laser
power, at some points the single tracks are not stable or not continuous,
and the same behavior is observed for low scan speed below 0.60 m/s
and high scan speed of 1.05 m/s (see Fig. 13). It can also be observed in
Fig. 13 that higher width of track is detected for 0.38 kW and 0.30 m/s.

Furthermore, on the basis of initial measurements, the processTa
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window is selected for parameters, which are mentioned in Table 3. So,
we have taken more measurements for single tracks widths for the 09
parameter combinations (mentioned in Table 5), and their average
value is taken for further processing.

7.2. Results of the single-layer printing

The single-layer samples were built on the processing parameters of
laser power from 0.32 kW to 0.40 kW (interval of 0.04 kW), scanning
speed of 0.60 to 0.90 m/s (interval of 0.15 m/s) and overlap rate from
20 to 35% (with an interval of 5%). A total of 36 Nos samples were built
by applying full factorial design (6k).

Fig. 11. Optical images of the surface morphologies of SLM-processed AlSi10Mg single tracks at laser power from 0.06 kW to 0.36 kW (interval of 0.06 kW) and
scanning speed from 0.10 m/s to 1.10 m/s (interval of 0.20 m/s).

Fig. 12. Width of the weld bead of single tracks versus scanning speed at dif-
ferent power of the laser beam. The thickness of the deposited powder layer is
0.03 mm. Scanning speed = 0.10 m/s-0.9 m/s for laser power = 0.18 kW,
0.24 kW, 0.30 kW and 0.36 kW.

Fig. 13. Width of the single tracks versus scanning speed at different power of
the laser beam at layer thickness of 0.03 mm. Scanning speed = 0.30 m/s
−1.05 m/s and laser power = 0.30 kW – 0.40 kW.
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Single-tracks geometric characteristics knowledge is helpful in the
determination of hatch distance of laser beam scanning, which, to-
gether with selected scanning strategy, governs the quality of a single
SLM layer [79]. Analysis of the morphology of a single layer, in turn, is
critical and important in the selection of the optimal strategy for the
fabrication of fully-dense and porosity free products. If the hatch dis-
tance is more than width of single-track, powder is melted in order of
different tracks. Non-optimal hatch distance can affect the information
of gaps between tracks in a single layer, which origins chains of pores in
the ultimate SLM product [79].

The hatch distance is calculated for each test trails based on single-
track width and the changing overlap rate [by using Eq. (2)]. Previously
discussed that hatch distance is very important for stable tracks. The
single-layer area of 8 mm × 8 mm is printed with 0.03 mm layer
thickness. 36 groups single layer samples were printed by following
processing parameters shown in Table 3 and Table 5.

= −h W O(1 )d R (2)

where hd is the hatch distance [μm], W is the width of the single track
[μm], OR is the overlap rate. The single layers were examined for sur-
face morphology with the Olympus GX51 optical microscope. The
measurements were repeated three times for each processing condition.

It was observed that morphology of single layer was stable for the
overlap rate of 25%, 30%, and 35% because of the low hatch distance,
which is better for continuity of tracks and pore-free structure. The
results of the surface morphology on the OM was revealed that the
processing parameters and their levels were suitable for further man-
ufacturing of bulk samples. But, for further processing, the three levels
of overlap rate were used as 25%, 30%, and 35%.

7.3. Results of the bulk samples fabrication

The bulk samples were made by using processing parameters of
laser power, scanning speed, overlap rate and layer thickness as

mentioned in Table 3 [78]. There is a total of 81 Nos (03 sets) bulk
samples (see Fig. 14(a)) were fabricated to study the effect of processing
parameters on the density, porosity, hardness and surface quality [78],
[84]. A total of 27 Nos cuboid samples were produced to make tensile
specimens and study tensile behavior. The energy consumption during
the whole SLM process was also measured for each sample with dif-
ferent combinations of processing parameters.

The heat treatment processes of solution heat treatment (SHT) at
530 °C and 540 °C for 02 h was performed on 02 sets of bulk samples,
and one set with SHT at 530 °C was further processed for artificial aging
(AA) for 12 h [78]. The surface quality, densification, strength, and
microstructural behavior were studied in the heat treatment conditions
and compared with samples of as-built (AB) condition specimens [78],
[84]. It concluded that the densification was enhanced to 99.94% by
applying SHT at 530 °C and 99.87% in AA in comparison to as-built
98.17%. The porosities were also decreased by the heat treatments due
to fine grain structure and strong bonding among the powder particles.
Heat treatment has an excellent effect on the reduction of porosities of
the AB samples. It was also confirmed from OM and SEM images that
highly dense parts had lower porosity [78].

For the sustainable and smart additive manufacturing, the sustain-
ability factor of energy consumption has been considered for para-
meters optimization regarding meeting quality requirements. The re-
sults of densification, porosity, tensile strength, hardness and surface
quality have been investigated and analyzed on different combinations
of processing parameters. We have defined a criterion for parts quali-
fication such as densification ≥ 98%, porosity ≤ 2%, tensile strength
≥ 350 MPa, hardness ≥ 110 HV and surface roughness ≤ 5 µm. We
have optimized process parameters which meeting above-mentioned
quality criteria by applying pareto front and statistical regression ana-
lysis.

The best-optimized parameters obtained are the laser power of
0.32 kW, scanning speed of 0.90 m/s, overlap rate of 25%, and hatch
distance of 0.08 mm which have consumed low specific energy

Table 5
Optimized and stable width of single tracks for different combinations of laser powers and scan speed.

Levels 1 2 3 4 5 6 7 8 9

Laser Power [kW] 0.32 0.32 0.32 0.36 0.36 0.36 0.40 0.40 0.40
Scan speed [m/s] 0.60 0.75 0.90 0.60 0.75 0.90 0.60 0.75 0.90
Width of single track [μm] 136.5 124.1 109.0 148.0 130.6 118.6 155.2 139.5 125.4

Fig. 14. Fabricated SLM specimens for the case study: (a) Bulk samples; (b)Thin-walled specimens.
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consumption (SEC) of 369.54 MJ/kg. In comparison to other processing
parameters combination, these optimized parameters have consumed
27.80% less SEC, which is very beneficial for sustainability and cleaner
production.

7.4. Results of the thin-walled specimens

By the implementation of our SSAM framework in the company, we
have initially achieved the best processing parameters from the man-
ufacturing of thin-walled specimens, which will be further utilized in
the production of functional products of the aerospace and automotive
industry.

7.4.1. Study the influence of wall thickness
In this study, the thin-walled specimens of various wall thickness

(i.e. from 0.5 mm to 5.0 mm, as mentioned in Table 3) were fabricated
for investigation of densification, porosity, mechanical properties,
hardness, surface and dimensional quality, and microstructural char-
acteristics in the AB, SHT, and AA conditions (see Fig. 14(b)) [85–88].

The best relative density was attained for 0.50-mm-wall thickness
specimens in the AB, SHT and AA conditions with a maximum relative
density of 99.92% in the AA condition, and the minimum relative
density of 93.42% was achieved for 1.50-mm-wall-thickness specimen
in SHT condition. The AA is beneficial for the low-wall-thickness spe-
cimens for improving their densification. The AA heat treatment has a
comparable effect on the porosity of lower-wall-thickness specimens
(i.e., from 0.50 to 2.0 mm) which means that the porosities of thin-
walled specimens have been reduced by applying AA in comparison
with AB condition. The minimum porosity of 0.08% is observed in the
0.50-mm-wallthickness specimen. It is also observed from OM and SEM
images that the porosities were increased in sizes and quantity till
1.50 mm wall thickness (except 0.50-mm-wall-thickness specimens).
Moreover, the porosities were reduced gradually with an increase in
wall thickness to 5.0 mm for the AB, SHT and AA conditions [86].

In the as-built (AB) condition, the average minimum hardness of
102.4 HV was achieved for a 1.0 mm wall thickness specimen, and the
average maximum hardness of 137.3 HV was attained for 5.0 mm wall
thickness specimen. It is also observed that the hardness was reduced
from 0.50 mm to 1.0 mm wall thickness and then improved till 5.0 mm
wall thickness specimens [85].

The SLM processed thin-walled specimens had a tensile strength of
188.4–364.0 MPa, 154.2–215.1 MPa and 197.9–274.2 MPa in the AB,
SHT and AA conditions respectively. The breakage elongation of
3.76–12.04%, 10.82–20.66% and 5.13–11.22% was examined in the
AB, SHT and AA conditions respectively. It has observed that the me-
chanical properties of AlSi10Mg thin-walled specimens are comparable
to the casted AlSi10Mg material A360.0 [89]. The strength and ductility
were higher because the thin-walled specimens were fabricated under
the optimal process parameters, and the relative density is greater than
93% and nearly equal to 100% for some specimens.

The purpose of above-mentioned studies was to investigate the ef-
fect of wall thickness on the densification, porosity and mechanical
characteristics of the thin-walled specimens. The heat treatment was
also applied on the thin-walled specimens to study its influence on the
quality characteristics of AlSi10Mg alloy by SLM process. The heat
treatment has positively influence on the enhancement of densification
and mechanical properties, and reduction in the porosities of the thin-
walled specimens.

It is concluded from this study that the densification and mechanical
characteristics were varied with varying the wall thickness. Moreover,
the study is further extended to study the different process parameters
influence on various wall thicknesses for manufacturing of quality
product with minimum energy consumption for the SSAM. So, we have
finalized the three wall thicknesses for our further study which are
1 mm., 2 mm and 3 mm. These wall thicknesses are our optimal wall
thickness which have done significant influence on the densification

and mechanical characteristics.

7.4.2. Study the influence of processing parameters
The thin-walled samples were manufactured by using processing

parameters of wall thickness, laser power, scanning speed, and hatch
distance as mentioned in Table 3. The specimens were fabricated to
study the effect of processing parameters on the density, porosity,
hardness and tensile behavior. The energy consumption during the
whole SLM process is also measured.

For the sustainable and smart additive manufacturing, the sustain-
ability factor of energy consumption has been considered for para-
meters optimization regarding meeting quality requirements. The re-
sults of densification, tensile strength, and hardness have been
investigated and analyzed on different combinations of processing
parameters. We have defined a criterion for parts qualification such as
densification ≥ 98%, porosity ≤ 2%, tensile strength ≥ 320 MPa,
hardness ≥ 100 HV and breakage elongation ≥ 10%. We have opti-
mized process parameters which meeting above-mentioned quality
criteria by applying pareto front and statistical regression analysis.

The best-optimized parameters obtained are the laser power of
0.35 kW, scanning speed of 1.07 m/s, and hatch distance of 0.13 mm
which have consumed low specific energy consumption (SEC) of
205.4 MJ/kg. On the above -mentioned optimized parameters, the re-
sponses have achieved values of 98.95% relative density, 1.05% por-
osity, 334.1 MPa tensile strength, 101.7 HV hardness and breakage
elongation of 10.01%. In comparison to other processing parameters
combination, these optimized parameters have consumed 57.3% less
SEC, which is very beneficial for sustainability, carbon emission and
cleaner production.

We have also optimized processing parameters with better quality
characteristics and minimum energy consumption. These optimized
parameters are 0.35 kW of laser power, 1.07 m/s of scanning speed, and
0.105 mm of hatch distance and have achieved densification of 98.75%,
porosity of 1.25%, tensile strength of 358.1 MPa, breakage elongation
of 14.67% and hardness of 106.2 HV with SEC of 249.2 MJ/Kg. When
comparing to other processing parameters combination, these opti-
mized parameters have consumed 48.3% less SEC which is very bene-
ficial for SSAM.

By the efficient implementation of SSAM framework, the above-
mentioned parameter collection and their results will be used by the
manufacturers and designers according to the demands of our valued
customers. Actually, in practical applications, there are different kinds
of needs according to the qualification of a product, and the customer
has a different demand for a product. So, our optimized parameters will
be used for the manufacturing of efficient and effective products ac-
cording to the requirements of the customer.

7.5. Results of the impeller pump manufacturing

The above-mentioned optimized parameters have been utilized by
the company for manufacturing of pump components and other com-
ponents of AlSi10Mg alloy (see Fig. 15). For the SSAM, the sustain-
ability perspective of AM is also considered that the product quality
meeting customer's requirement, use less energy which beneficial to
environment, and product cost and productivity is also better. By
considering these SAM perspectives, we have used the optimized
parameters which gives better product quality with minimum energy
consumption, and also good productivity with minimum processing
time and cost. Finally, it can be extracted from our case study that our
SSAM framework will be effectively implemented by the company by
manufacturing different components of AlSi10Mg.

8. Managerial implications

Managerial significances could be generated from key findings and
concealed knowledge of BDA, which are beneficial when several
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departments’ managers are making sustainable and smart additive
manufacturing decisions subsequently [28]. Targeting at the product
manufacturing cycle of additive manufacturing products, four man-
agerial implications of the developed framework are included, parti-
cularly for the marketing department, R&D department, production
department, and service department [75].

• The marketing department is responsible for classifying the un-
spoken needs of the forecast customers' and promising customers.
When a more accurate aiming is established and forwarded, then it
is worthwhile to match several products with numerous customers,
respectively. BDA makes it conceivable to pick the most appropriate
customers from the excessive number of customers' data.

• The R & D department inputs for AM will be increased in the future,
which may be due to the development and usage of innovative
technologies for the manufacturing of cleaner production. There is a
massive amount of data generated for the making of suitable solu-
tions in the conceptual design stage, for making decisions in the
detailed design stage, and realization of AM product innovative
design. The BDA is applied to categorize the most correlative ex-
amples as detailed as possible to give direction for the innovative
product development [75].

• In the production department, BDA and SSAM framework should be
applied to manage the production of AM systems, improve the en-
ergy efficiency of AM systems, and monitor the quality of AM pro-
duct. With the provision of IoT devices and smart meters, an en-
ormous amount of real-time, heterogeneous, and multi-source data
of production is collected. Moreover, with the assistance of BDA, the
optimization of processing parameters relevant to product quality,
energy consumption, workshop scheduling decisions, etc. could be
comparatively easy to attain. The energy proficiency of AM systems
could also be enhanced.

• In the services department, the customers' satisfaction is increased
by the state-of-the-art service strategies, such as, real-time mon-
itoring service of product quality and predictive maintenance ser-
vice which should be attained by continuous monitoring of product's
status. BDA would be applied to analyze the huge gathered data.

9. Conclusions

In the present paper, BDA, AM, and SSM have been studied to-
gether, which were investigated in academia and industry separately.

These are the advanced manufacturing technologies and lies in the
Industry 4.0. AM is an emerging technology that is widely applied in
manufacturing enterprises for the production of unique and complex
shapes products. The authors of this paper made the following im-
portant contributions:

• Firstly, by combining the key technologies of sustainable manu-
facturing, smart manufacturing, and additive manufacturing, the
term SSAM was created, which applied throughout the article. The
concept of SSAM did not exist in a precise form before, but it is
critical to advance knowledge in this field.

• Secondly, a conceptual framework of BDA in SSAM (BD-SSAM) was
proposed for the product manufacturing cycle of AM products. The
proposed framework can be utilized as a guideline to select the re-
lated product manufacturing cycle stages that influence on the
sustainable production of a specified AM enterprise.

• Thirdly, the big data acquisition and integration procedures estab-
lished, which were applied for gathering real-time, multisource and
heterogeneous data for AM and then further processing for useful
output.

• Fourthly, the data mining approaches could be applied to expose the
association between sustainable production performance and AM
processing parameters. Furthermore, the processing parameters
have been optimized to production performance by improving
product quality, productivity, and reducing energy consumption and
emission which is beneficial for smart manufacturing and CP.

The proposed BD-SSAM framework has been evidenced in an ap-
plication scenario in a company. The new emerging company has the
task of manufacturing of components of pumps of AlSi10Mg alloy by
using the SLM system. A flowchart and framework were developed for
the company. The real-time data can be attained and communicated to
the AM enterprise database. With the help of BDA and by the use of
algorithms, the process parameters of SLM have been optimized for
improving product quality, reduction in energy consumption, and im-
prove productivity.

The limitation of the present study is that the proposed BD-SSAM
framework is applied only on the BOL stage of product life cycle due to
the available resources and configuration of IoT devices in the com-
pany. The proposed framework is only applied to 1 AM system (i.e. SLM
system), and the algorithm for data analysis, such as association, clas-
sification, and clustering are not studied in this paper.

Future research works will be carried out on the application of this
framework on the whole lifecycle stages, and development of the al-
gorithms to optimize and prediction of the processing parameters of the
AM for various AM techniques and multiple materials.
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