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A B S T R A C T   

Development of composite material parts requires significant research and development effort. The fiber size, 
volume fraction and direction are important in determining the properties of the part. Additive manufacturing 
(AM) methods are increasingly used for printing composite materials. Advancements in 3D scanning and imaging 
technology have raised a significant concern in reverse engineering of parts made by AM, which may result in 
counterfeiting and unauthorized production of high quality parts. This work is focused on using imaging methods 
and machine learning to reverse engineer a composite material part, where not only the geometry is captured but 
also the tool path of 3D printing is reconstructed using machine learning of microstructure. A dimensional ac
curacy with only 0.33% difference is achieved for the reverse engineered model.   

1. Introduction 

Additive Manufacturing (AM) methods are being adopted in in
dustries ranging from aerospace, automotive and medical to arts and 
construction [1–3]. The capabilities of 3D printers are increasing to 
allow printing different kinds of materials and geometries. A wide range 
of feed materials are available across the spectrum of polymers, metals, 
ceramics and concrete as well as biomaterials and reinforced polymers 
[4–6]. 3D printed biomaterial such as strontium substituted hydroxy
apatite (SrHA) recently showed promising results for bone tissue engi
neering applications [7]. 

Polymer matrix composites (PMCs) are now widely used in weight 
sensitive industrial applications such as aircraft and automobile struc
tures. Many of these composite structures have been successfully 3D 
printed, especially with carbon and glass fiber reinforcement [8,9]. As 
the need for 3D printing lightweight materials is increasing, innovative 
material filaments are being developed for use in commercial 3D 
printers. A high-density polyethylene composite reinforced with fly ash 
cenosphere is found promising for use in commercial fused filament 
fabrication (FFF) 3D printers [10,11]. Efforts are also going on to recycle 
thermoplastics for developing high performance 3D printable PMC fil
aments for use in FFF printers [12]. These developments in new mate
rials for AM are coupled with developing new capabilities in 3D printers. 
Using a multi-head FDM 3D printer has enabled co-deposition of 

multiple materials and printing multifunctional products [13]. FFF 
printing of carbon nanotube reinforced PEEK has also been used for 
developing multifunctional composites [14,15]. In many cases, the 
toolpath of 3D printers is configured to obtain specific distribution or 
orientation of reinforcement in the manufactured part. 

Significant research and development effort is invested in developing 
the composite material parts using AM, which requires configuring pa
rameters such as volume fraction and orientation of the reinforcement as 
well as optimizing AM parameters such as slicing thickness and toolpath 
[16]. Since many high technology applications, e. g. aircraft and satellite 
parts, are being printed using AM of composite materials, reverse en
gineering of these parts may result in loss of important intellectual 
property. The part shape can be reverse engineered using 3D scanners 
and CAD design tools. However, obtaining a high-quality composite part 
also requires reproducing composite parameters such as volume fraction 
of the reinforcement and 3D printer toolpath. Methods are available to 
determine the volume fraction and orientation of reinforcement in 
composites [17,18], which can also be used on 3D printed parts. In 
recent years, a steady improvement in the capabilities of micro-CT (μCT) 
scans is observed that has allowed improved image quality and possi
bility of conducting in-situ experiments [19–22]. In a recently published 
research article, micro-CT images are used to read the embedded QR 
code in a 3D printed part for product authentication and since the im
ages are off low contrast image processing techniques were used to 
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improve the readability [22]. The present work is focused on deter
mining the possibility of reconstructing the toolpath of 3D printed parts 
by means of identifying the orientation of fibers in the microstructure 
obtained from microscopy and μCT scan, which has not been studied yet. 

Cybersecurity risks related to sabotage or reverse engineering of 
parts have been studied in detail because 3D printing has made it easier 
to print parts without having expertise in the manufacturing process 
[23,24]. The classification of attack and possible damage by the attacks 
has been described for AM [25,26]. Once considered a remote possi
bility, side channel attacks related to capturing power consumption or 
vibration of the machine and using it for reverse engineering have been 
successfully demonstrated [27]. Since the AM process is defined as a 
cyber-physical system (CPS), it is exposed to both physical and cyber 
risks [28,29]. Sabotage during the 3D printing process has shown to 
embed defects that are hard to detect using conventional destructive or 
non-destructive test methods and cause in-service failure of parts [30]. 
Attacks related to sabotaging fiber reinforced laminated composite 
materials have also been studied, where a change in the layup sequence 
of a laminate can change the mechanical properties [31]. Technologies 
are required to enable positive identification of genuine parts made by 
AM [32]. Novel methods are being developed to counter the unautho
rized production and reverse engineering. In one available approach, 
security features are embedded in CAD files so the high-quality part will 
only print under unique settings such as STL file resolution, slicing 
conditions, part orientation on the print bed, and the printer operating 
parameters [33]. In another approach, a method was developed using 
image processing techniques known as G-ID slicing and labelling inter
face [34]. Where the subtle patterns left by the 3D printer are identified 
and tagged using the slicing and infill parameters instead of embedding 
new tags onto the model [34]. In this work, the possibility of reverse 
engineering the tool path used to 3D print a composite material spec
imen is explored using machine learning methods. While ML methods 
are enabling composite material design [35–37], they may also be used 
for reverse engineering of products, which is the focus of the present 
work. 

2. Material and methods 

A FlashForge- Creator Pro Dual Extruder FFF 3D printer is used for 
printing the specimens. The CAD models are designed using SolidWorks 
2017 (Waltham, Massachusetts) and saved in STL format. ABS-GF10 
glass fiber reinforced acrylonitrile butadiene styrene (ABS) filament of 
1.75 mm diameter, manufactured by 3DXTECH, Grand Rapids Michi
gan, USA, is used for 3D printing. The STL files are processed using 

ReplicatorG software for preparing the sliced model and generating the 
G-code, which is used for printing the model. The printing parameters 
included 100% solid infill, travel feed rate of 15 mm/s, feed rate of 41 
mm/s, extrusion temperature of 220 �C, and build platform temperature 
of 120 �C. The printing direction of the fiber is set to 0� and 90� for 
alternative layers and the layer resolution (thickness of each layer) is set 
to 0.27 mm for the original model and 0.28 mm for the reversed engi
neered model. Fig. 1 shows the CAD model, a cube of 6 mm side, and 
Fig. 1 shows the μCT scan of the 3D printed model. Five identical cubes 
were printed for testing the repeatability of the process. Since the aim of 
the present work is to capture the fiber orientation information, the 
quality of the specimen and printing are not relevant at this stage. These 
aspects may be covered in the future works when proficiency in 
capturing the toolpath and printing parameters is attained. 

2.1. Imaging 

Hitachi S-3400N SEM (Tokyo, Japan) is used for capturing micro
structure and dimensions of the specimens. The specimens are coated 
with gold using Cressington 108 Auto Sputter Coater (Watford, United 
Kingdom) before microscopy. The SEM images are used to measure the 
specimen height and the height of each layer, which are used as inputs in 
the ReplicatorG software when converting a 3D model into a STL format 
for printing. 

The μCT scans are conducted using SkyScan 1172 (Bruker, Belgium) 
at the source voltage of 44 kV, current of 222 μA, and camera pixel size 
of 9.5 μm, rotation step of 0.6� per scan, and 360� rotation providing 656 
raw images. The image reconstruction software has an option to rotate 
the images, which is useful in obtaining a clear final image of each layer 
and helps in obtaining the fiber orientation at each layer. This infor
mation of the fiber orientation at each layer is needed to reproduce the 
G-Code. The reconstructed μCT images of two layers are shown in Fig. 2. 
The glass fibers filled in ABS can be observed as the white lines. These 
fibers help in inferring the printing direction in each image. Here, the 
horizontal direction is taken as the reference and assigned 0� orientation 
and then the orientation of fibers in individual layers are identified in 
the counterclockwise direction. 

2.2. Recurrent Neural Network 

Recurrent neural network (RNN) is a supervised ML algorithm, 
which is designed to model sequential data. The order is very important 
in sequential data. There are different forms of sequence modeling al
gorithms but the one used here is the many-to-one sequence model, 

Fig. 1. (a) CAD model with dimensions marked in mm and (b) μCT scan of the 3D printed part (the violet lines seen in the image are from the imaging refer
ence frame). 
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which implies that the input data is a sequence but the output is not a 
sequence, rather a fixed-size vector. In a standard neural network, after 
the model is trained, information flows from input to the hidden layer to 
the output layer. In an RNN, the hidden layer has inputs from both the 
input layer and the hidden layer from the previous step. The flow of 
information in an RNN from one time-step to another introduces 
memory of past inputs into the network [38–40]. This flow of infor
mation is usually depicted as a loop called recurrent edge. 

The representation of a multilayer RNN is presented in Fig. 3, which 
is used to predict the direction of fibers in a μCT scan image. The input 
represented as x(t) is the CT-scan image in the present case and the 
output y(t) is the fiber orientation angle. The curved loops beside the 
hidden layers h1

(t) and h2
(t) in the figure represent the recurrent edge. The 

unfolded version shows the functioning of recurrent edge, where the 
information flows from the past inputs to the hidden layer. At any time 
instance t the model uses the information from the past and input at time 
t to predict the output at t. Since AM follows a sequential process of 
printing, the fiber orientation at each layer can be helpful to predict the 
orientation of fiber of the next layer. Using this idea, an RNN model is 
implemented in Python language and TensorFlow package. Typically, a 
backpropagation through time (BPTT) algorithm is used to train an 
RNN. However, the BPTT algorithm sometimes has a problem of van
ishing gradient while training RNN. Since sequential data is fed into the 
RNN model for training, it faces difficulty in learning the long-term 
dependencies, which implies that the model will not be able to relate 
the images which occurred several time steps apart. This problem leads 
to preventing the weights in the hidden layer from updating according to 
the gradient from the earlier time step, causing the RNN to stop from 

further training. To address these issues, the RNN architecture with Long 
Short-Term Memory (LSTM) network is used [40]. RNN with hidden 
layers containing LSTM cells take information from the input and from 
the previous hidden layers and calculate the output through a standard 
set of equations. Then sending the information to the next layer in the 
model and to the hidden layer (i.e. another LSTM cell) in the next time 
step. LSTM cells are designed to handle the vanishing gradient problem, 
which have inbuilt default units programmed to remember the updates 
from the previous time steps without loss of information over long time 
steps. 

3. Results and discussion 

3.1. Dimensional accuracy of reverse engineered sample 

The printed cubes have some curvature due to thermal expansion 
mismatch between the modeling material and build plate. Hence, 
dimensional measurements were conducted on the printed cubes and on 
the images obtained by SEM to measure the length of various sections. 

Fig. 2. CT scan of slices of a 3D printed model after reconstruction showing (a) 0� and (b) 90� orientation of the fiber in the middle part.  

Fig. 3. Representation of the multilayer RNN and the unfolded version of it.  

Table 1 
Comparison of measurements of one of the original models obtained using 
Vernier calipers and SEM images.  

Measurement Length (mm) Width (mm) Height (mm) 

Vernier Caliper 6.06 � 0.04 6.10 � 0.04 6.06 � 0.08 
SEM 6.05 � 0.01 6.10 � 0.04 6.10 � 0.02  
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Table 1 compares the measurements obtained by the two methods. The 
measurements obtained from both methods are very consistent and have 
a small standard deviation. The measured dimensions are consistent 
with those in the CAD model. After finding the overall dimensions, the 
next task in reverse engineering is to gather information on the number 
of layers in the specimen and fiber orientation in each step. 

The fiber orientation is obtained from the μCT scan images. In Fig. 4, 
images of the 3D printed model are shown. It can be observed that a 
border is first printed and then the material is deposited to fill the inner 
square space. This region of interest is enclosed by the red squares, in 
which glass fibers are aligned in a specific direction only. The orienta
tions of fibers are identified as 0� and 90� in Fig. 4a and Fig. 4b, 
respectively. Similar analysis is conducted layer by layer and these μCT 
images are used to train the ML model. The boundary is ignored in the 
analysis because the direction of boundary printing is always the same 
and easy to replicate. 

A few μCT images show overlapping printing directions as shown in 
Fig. 5 because the scan resolution is much finer than the deposited layer 
thickness. These overlapping images are mostly at the boundary of two 
deposited layers due to the slight slope that can be either in the printing 
or in the specimen positioning on the μCT stage. These images are 
removed from the dataset because there is enough information available 
from other slices that are cleaner. In order to have a defined/labeled 
angle, a set of 433 images that show clear orientation of fibers is iden
tified and rotated so that the fiber orientation is horizontal. These im
ages are labeled as 0� fiber orientations. All the images are cropped to a 
region of interest to decrease the number of pixels in the analysis. The 
cropped image is shown in Fig. 5 with each image having 536 � 536 
pixels. A circular cropped image is used in order to avoid any sharp 
angles in the image because training a neural network having corners or 
sharp angles can make the network biased resulting in inaccurate pre
dictions. Individual fibers in each image show some variation in their 
direction. However, the algorithm takes the global signature as the 
features for the 0� and disregards the individual fiber orientation. Each 
of these images are then rotated counterclockwise from 0� to 180� at 
1�interval using a Python code. This procedure allows creating a large 
training database with controlled fiber orientation and trains the model 
to identify any angle. This procedure resulted in 78,373 images. The 
process of rotating the images and cropping them to generate training 
data is known as image augmentation and it is helpful in training the 
neural network model to be robust. 

In order to accelerate the image augmentation, Binarized Statistical 
Image Features (BSIF) algorithm is used [41]. BSIF is used to convert an 
image into a binary image format without losing valuable features. Fig. 6 
shows an example of the image produced by the BSIF algorithm. The 

images processed through BSIF algorithm are used for training the ML 
algorithm. The output image produced by the BSIF algorithm is binary 
code for each pixel in the image and is stored in a 1D array, which makes 
it convenient to handle large amounts of data. Although the visual 
representation of features in Fig. 6 is not well resolved to the naked eye, 
such images are proven to perform as well as any other state-of-the-art 
descriptor [41]. Use of BSIF code reduced each image to 1 � 256 
pixels, which reduced the computational expense involved in running 
RNN. 

3.2. Prediction of fiber orientation 

The RNN algorithm is trained using the 78,373 images generated in 
the previous step to predict the orientation/angle of the fiber. The 
dataset is split into 70% (54,861 images) for training and 30% (23,512 
images) of validation. In addition, a test dataset of 5,250 μCT scan im
ages is generated as a test dataset to check the accuracy of prediction 
after training. The mean square error (MSE) loss function is used in this 
algorithm since the output value is a continuous number between 0� and 
180�. Once the training of the neural network is started, it is run itera
tively and the best output for each iteration is saved. When the least MSE 
is obtained, then the architecture of the neural network is finalized, and 
the test dataset is used to run through the RNN model. It is important to 
limit the number of times the algorithm runs on the test dataset because 
RNN can remember the data, which affects the accuracy of the model. 

In Table 2, the MSE values for training, validation and test dataset at 
different epochs is shown. Epoch is the number of times the training 
dataset is run iteratively to train the model. As the number of epochs 
increases, the performance on the test dataset improves which is 
evident. However, as the number of epochs increases, the time required 
to run the algorithm also increases so it is important to find a balance 
between the computing time and the accuracy. Here, the training of the 
model for 10,000 epochs took about 31 h and it achieved the lowest MSE 
for the test dataset. As the importance was given for accuracy, 10,000 
epochs were used for predicting the angle. The trend presented in 
Table 2 shows that further training will increase the expense without 
increasing the accuracy by any appreciable extent. Fig. 7 shows a graph 
between MSE values for each angle in the training and test dataset for 
the model trained for 10000 epochs. The test shows improved accuracy 
over training dataset. The MSE values for the training and test dataset 
for 10,000 epochs are very close. The trend observed in Fig. 7 does not 
show signs of overfitting or underfitting. Fig. 7(a) shows the prediction 
of the fiber angle with respect to the actual angle for the test dataset. The 
predicted value for each labeled angle and the linear regression line is 
also shown in the graph. As can be observed in Fig. 7(b), the result 

Fig. 4. Image slices of a 3D printed model showing a region of interest in (a) 0� and (b) 90� fiber orientation in the infill.  
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predicted by the algorithm is very close to the exact angle with less than 
0.5� variation. All the points lie around the regression line and MSE 
values are low. But at the ends of the regression line that is at 0� and 
180� where the predicted angles are deviating away from the regression 
line, the error in prediction increases which is evident in Fig. 7 (a) which 
shows higher MSE values compared to other angles. This is because the 
fibers oriented at both these angles appear the same which makes it 
difficult for the ML algorithm to learn and predict accurately. Therefore, 
the prediction error is higher for 0� and 180� angles. From this analysis, 
the orientation of the fiber at each layer of the 3D model can be pre
dicted from a μCT scan image of the model. 

3.2.1. Validation of the machine learning model 
For validating the ML model used, images obtained on a 3D printed 

cylindrical specimen are used to predict the fiber orientation. Fig. 8(a) 
the model of the cylinder in Solidworks is shown and in Fig. 8(b) the μCT 
scan image of the slice of 3D printed cylinder can be seen. In Fig. 8, MSE 
for the training and test sets is plotted. It is observed that the MSE is very 
low, which is also reflected in the angle prediction plotted in Fig. 8. This 
test on a different specimen demonstrates that the trained ML algorithm 
is capable of predicting the fiber orientation in similar specimens. 

3.2.2. 3D printing of reverse engineered model 
Using the information from previous analysis for the cube, the 

reverse engineered model is designed in SolidWorks 2017. The 
measured length, width and height values of 6.05, 6.10 and 6.09 mm, 
respectively are used as the model dimensions and then G-code is 
generated using the measured layer thickness and fiber orientation. A 
comparison of original and reverse engineered specimen dimensions is 
presented in Table 3. The dimensions of both types of specimens show 
only 0.33% difference. The values presented in this table are obtained on 
5 original and 10 reverse engineered specimens and several measure
ments are taken on each specimen at different locations. The dimensions 
of the reverse engineered model are observed to be slightly higher than 
the original 3D printed specimens but the difference is only 0.33%. 
These results show that the available ML methods can be trained to 
predict the fiber angle in fiber reinforced composites and develop 
reverse engineered components. 

Fig. 5. μCT scan images showing (a) a region of overlapping layers and (b) the region of interest selected in the slice, which is sent to the BSIF algorithm.  

Fig. 6. μCT scan image (a) before going though BSIF and (b) the image produced by BSIF algorithm.  

Table 2 
MSE values at different epochs for Training, Validation and Test Datasets.  

Parameter Epochs 

500 1000 10000 

Training MSE 0.49 0.23 0.06 
Validation MSE 1.53 1.45 0.04 
Test MSE 6.40 6.20 0.04  
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4. Conclusions 

The aim of this work is to reverse engineer a high-quality replica of 
fiber reinforced composite material. A glass fiber reinforced ABS 

filament is used to 3D print the specimens.  

� A reverse engineering method is proposed using the μCT scan and 
SEM images of the model. The tool-path information is captured by 
identifying the fiber orientation in each layer with the help of 
Recurrent Neural Network with LSTM architecture.  
� A refined RNN model achieving a high degree of accuracy that has 

MSE loss of 0.04 an error of 0.5� in predicting the printing orienta
tion of the fiber is obtained. By using RNN architecture, the printing 
orientation at each layer of the model was successfully identified.  
� The original models were reverse engineered with a dimensional 

accuracy difference of only 0.33%. 

Fig. 7. (a) Mean square error for each angle in the training and test dataset. (b) The predicted angle of fiber orientation compared to the correct labeled value for test 
dataset with the regression line. 

Fig. 8. (a) Model of the cylinder made in SolidWorks, (b) micro CT-scan image of a slice of cylinder used for machine learning. (c) Mean Square error for each angle 
in the training and test datasets. (d) The predicted angle of fiber orientation compared to the correct labeled value for test dataset with the regression line. 

Table 3 
Measurements of original and reverse engineered model.  

Dimension Original (mm) Reverse Engineered (mm) Difference (%) 

Length 6.08 � 0.04 6.10 � 0.03 0.33 
Width 6.13 � 0.02 6.15 � 0.02 0.32 
Height 6.07 � 0.05 6.09 � 0.02 0.33  
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The work shows that the capabilities developed for designing high 
performance composites can also be used for reverse engineering high 
quality replicas of composite parts. The research on developing config
urations of composite layup sequence for certain parts can be reverse 
engineered from the microstructural images. Although the part geome
try is simple in the current example, the success of the ML method in 
identifying tracking any given orientation of the fibers demonstrates the 
possibility of reconstructing the G-code and reverse engineering any 
composite part. 
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